Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Dual number
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Algebraic geometry == In modern [[algebraic geometry]], the dual numbers over a field <math>k</math> (by which we mean the ring <math>k[\varepsilon]/(\varepsilon^2)</math>) may be used to define the [[tangent vectors]] to the points of a <math>k</math>-[[scheme (mathematics)|scheme]].<ref name=":0" /> Since the field <math>k</math> can be chosen intrinsically, it is possible to speak simply of the tangent vectors to a scheme. This allows notions from [[differential geometry]] to be imported into algebraic geometry. In detail: The ring of dual numbers may be thought of as the ring of functions on the "first-order neighborhood of a point" β namely, the <math> k</math>-[[scheme (mathematics)|scheme]] <math> \operatorname{Spec} (k[\varepsilon]/(\varepsilon^2))</math>.<ref name=":0">{{Citation |last=Shafarevich |first=Igor R. |title=Schemes |date=2013 |url=http://dx.doi.org/10.1007/978-3-642-38010-5_1 |work=Basic Algebraic Geometry 2 |pages=35β38 |access-date=2023-12-27 |place=Berlin, Heidelberg |publisher=Springer Berlin Heidelberg |doi=10.1007/978-3-642-38010-5_1 |isbn=978-3-642-38009-9}}</ref> Then, given a <math> k</math>-scheme <math> X</math>, <math> k</math>-points of the scheme are in 1-1 correspondence with maps <math> \operatorname{Spec} k \to X </math>, while tangent vectors are in 1-1 correspondence with maps <math> \operatorname{Spec} (k[\varepsilon]/(\varepsilon^2)) \to X </math>. The field <math>k</math> above can be chosen intrinsically to be a [[residue field]]. To wit: Given a point <math>x</math> on a scheme <math>S</math>, consider the [[stalk (mathematics)|stalk]] <math>S_x</math>. Observe that <math>S_x</math> is a [[local ring]] with a unique [[maximal ideal]], which is denoted <math>\mathfrak m_x</math>. Then simply let <math>k = S_x / \mathfrak m_x</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Dual number
(section)
Add topic