Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Dirichlet character
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Products of prime powers === Let <math>m=p_1^{m_1}p_2^{m_2} \cdots p_k^{m_k} = q_1q_2 \cdots q_k</math> where <math> p_1<p_2< \dots < p_k</math> be the factorization of <math>m</math> into prime powers. The group of units mod <math>m</math> is isomorphic to the direct product of the groups mod the <math>q_i</math>:<ref>See [[Multiplicative group of integers modulo n#General composite numbers|group of units]] for details</ref> :<math>(\mathbb{Z}/m\mathbb{Z})^\times \cong(\mathbb{Z}/q_1\mathbb{Z})^\times \times(\mathbb{Z}/q_2\mathbb{Z})^\times \times \dots \times(\mathbb{Z}/q_k\mathbb{Z})^\times .</math> This means that 1) there is a one-to-one correspondence between <math>a\in (\mathbb{Z}/m\mathbb{Z})^\times</math> and <math>k</math>-tuples <math>(a_1, a_2,\dots, a_k)</math> where <math>a_i\in(\mathbb{Z}/q_i\mathbb{Z})^\times </math> and 2) multiplication mod <math>m</math> corresponds to coordinate-wise multiplication of <math>k</math>-tuples: :<math>ab\equiv c\pmod{m}</math> corresponds to :<math>(a_1,a_2,\dots,a_k)\times(b_1,b_2,\dots,b_k)=(c_1,c_2,\dots,c_k)</math> where <math>c_i\equiv a_ib_i\pmod{q_i}.</math> The [[Chinese remainder theorem]] (CRT) implies that the <math>a_i</math> are simply <math>a_i\equiv a\pmod{q_i}.</math> There are subgroups <math> G_i<(\mathbb{Z}/m\mathbb{Z})^\times</math> such that <ref>To construct the <math>G_i, </math> for each <math> a\in (\mathbb{Z}/q_i\mathbb{Z})^\times </math> use the CRT to find <math>a_i\in (\mathbb{Z}/m\mathbb{Z})^\times</math> where :<math>a_i\equiv \begin{cases} a &\mod q_i\\ 1&\mod q_j, j\ne i. \end{cases} </math> </ref> :<math>G_i\cong(\mathbb{Z}/q_i\mathbb{Z})^\times </math> and :<math>G_i\equiv \begin{cases} (\mathbb{Z}/q_i\mathbb{Z})^\times &\mod q_i\\ \{1\}&\mod q_j, j\ne i. \end{cases} </math> Then <math>(\mathbb{Z}/m\mathbb{Z})^\times \cong G_1\times G_2\times...\times G_k</math> and every <math>a\in (\mathbb{Z}/m\mathbb{Z})^\times</math> corresponds to a <math>k</math>-tuple <math>(a_1, a_2,...a_k)</math> where <math>a_i\in G_i </math> and <math>a_i\equiv a\pmod{q_i}. </math> Every <math>a\in (\mathbb{Z}/m\mathbb{Z})^\times</math> can be uniquely factored as <math>a =a_1a_2...a_k.</math> <ref>Assume <math>a</math> corresponds to <math>(a_1,a_2, ...)</math>. By construction <math>a_1</math> corresponds to <math>(a_1,1,1,...)</math>, <math>a_2</math> to <math>(1,a_2,1,...)</math> etc. whose coordinate-wise product is <math>(a_1,a_2, ...).</math></ref> <ref>For example let <math>m=40, q_1=8, q_2=5.</math> Then <math>G_1=\{1,11,21,31\}</math> and <math>G_2=\{1,9,17,33\}.</math> The factorization of the elements of <math>(\mathbb{Z}/40\mathbb{Z})^\times</math> is :<math> \begin{array}{|c|c|c|c|c|c|c|} & 1 & 9 & 17 & 33 \\ \hline 1 & 1 & 9 & 17 & 33 \\ 11 & 11 & 19 & 27 & 3 \\ 21 & 21 & 29 & 37 & 13 \\ 31 & 31 & 39 & 7 & 23 \\ \end{array} </math> </ref> If <math>\chi_{m,\_}</math> is a character mod <math>m,</math> on the subgroup <math>G_i</math> it must be identical to some <math>\chi_{q_i,\_}</math> mod <math>q_i</math> Then :<math>\chi_{m,\_}(a)=\chi_{m,\_}(a_1a_2...)=\chi_{m,\_}(a_1)\chi_{m,\_}(a_2)...=\chi_{q_1,\_}(a_1)\chi_{q_2,\_}(a_2)...,</math> showing that every character mod <math> m</math> is the product of characters mod the <math>q_i</math>. For <math>(t,m)=1</math> define<ref>See [https://lmfdb.org/knowledge/show/character.dirichlet.conrey Conrey labeling].</ref> :<math> \chi_{m,t}=\chi_{q_1,t}\chi_{q_2,t}...</math> Then for <math>(rs,m)=1</math> and all <math>a</math> and <math>b</math><ref>Because these formulas are true for each factor.</ref> :<math>\chi_{m,r}(a)\chi_{m,r}(b)=\chi_{m,r}(ab),</math> showing that <math>\chi_{m,r}</math> is a character and :<math>\chi_{m,r}(a)\chi_{m,s}(a)=\chi_{m,rs}(a),</math> showing an isomorphism <math>\widehat{(\mathbb{Z}/m\mathbb{Z})^\times}\cong(\mathbb{Z}/m\mathbb{Z})^\times.</math> ==== Examples ''m'' = 15, 24, 40 ==== <math>(\mathbb{Z}/15\mathbb{Z})^\times\cong(\mathbb{Z}/3\mathbb{Z})^\times\times(\mathbb{Z}/5\mathbb{Z})^\times.</math> The factorization of the characters mod 15 is :<math> \begin{array}{|c|c|c|c|c|c|c|} & \chi_{5,1} & \chi_{5,2} & \chi_{5,3} & \chi_{5,4} \\ \hline \chi_{3,1} & \chi_{15,1} & \chi_{15,7} & \chi_{15,13} & \chi_{15,4} \\ \chi_{3,2} & \chi_{15,11} & \chi_{15,2} & \chi_{15,8} & \chi_{15,14} \\ \end{array} </math> The nonzero values of the characters mod 15 are :<math> \begin{array}{|||} & 1 & 2 & 4 & 7 & 8 & 11 & 13 & 14 \\ \hline \chi_{15,1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi_{15,2} & 1 & -i & -1 & i & i & -1 & -i & 1 \\ \chi_{15,4} & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ \chi_{15,7} & 1 & i & -1 & i & -i & 1 & -i & -1 \\ \chi_{15,8} & 1 & i & -1 & -i & -i & -1 & i & 1 \\ \chi_{15,11} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 \\ \chi_{15,13} & 1 & -i & -1 & -i & i & 1 & i & -1 \\ \chi_{15,14} & 1 & 1 & 1 & -1 & 1 & -1 & -1 & -1 \\ \end{array} </math>. <math>(\mathbb{Z}/24\mathbb{Z})^\times\cong(\mathbb{Z}/8\mathbb{Z})^\times\times(\mathbb{Z}/3\mathbb{Z})^\times.</math> The factorization of the characters mod 24 is :<math> \begin{array}{|c|c|c|c|c|c|c|} & \chi_{8,1} & \chi_{8,3} & \chi_{8,5} & \chi_{8,7} \\ \hline \chi_{3,1} & \chi_{24,1} & \chi_{24,19} & \chi_{24,13} & \chi_{24,7} \\ \chi_{3,2} & \chi_{24,17} & \chi_{24,11} & \chi_{24,5} & \chi_{24,23} \\ \end{array} </math> The nonzero values of the characters mod 24 are :<math> \begin{array}{|||} & 1 & 5 & 7 & 11 & 13 & 17 & 19 & 23 \\ \hline \chi_{24,1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi_{24,5} & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ \chi_{24,7} & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ \chi_{24,11} & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ \chi_{24,13} & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ \chi_{24,17} & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ \chi_{24,19} & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\ \chi_{24,23} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ \end{array} </math>. <math>(\mathbb{Z}/40\mathbb{Z})^\times\cong(\mathbb{Z}/8\mathbb{Z})^\times\times(\mathbb{Z}/5\mathbb{Z})^\times.</math> The factorization of the characters mod 40 is :<math> \begin{array}{|c|c|c|c|c|c|c|} & \chi_{8,1} & \chi_{8,3} & \chi_{8,5} & \chi_{8,7} \\ \hline \chi_{5,1} & \chi_{40,1} & \chi_{40,11} & \chi_{40,21} & \chi_{40,31} \\ \chi_{5,2} & \chi_{40,17} & \chi_{40,27} & \chi_{40,37} & \chi_{40,7} \\ \chi_{5,3} & \chi_{40,33} & \chi_{40,3} & \chi_{40,13} & \chi_{40,23} \\ \chi_{5,4} & \chi_{40,9} & \chi_{40,19} & \chi_{40,29} & \chi_{40,39} \\ \end{array} </math> The nonzero values of the characters mod 40 are :<math> \begin{array}{|||} & 1 & 3 & 7 & 9 & 11 & 13 & 17 & 19 & 21 & 23 & 27 & 29 & 31 & 33 & 37 & 39 \\ \hline \chi_{40,1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi_{40,3} & 1 & i & i & -1 & 1 & -i & -i & -1 & -1 & -i & -i & 1 & -1 & i & i & 1 \\ \chi_{40,7} & 1 & i & -i & -1 & -1 & -i & i & 1 & 1 & i & -i & -1 & -1 & -i & i & 1 \\ \chi_{40,9} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ \chi_{40,11} & 1 & 1 & -1 & 1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & -1 \\ \chi_{40,13} & 1 & -i & -i & -1 & -1 & -i & -i & 1 & -1 & i & i & 1 & 1 & i & i & -1 \\ \chi_{40,17} & 1 & -i & i & -1 & 1 & -i & i & -1 & 1 & -i & i & -1 & 1 & -i & i & -1 \\ \chi_{40,19} & 1 & -1 & 1 & 1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & -1 & -1 & 1 & -1 \\ \chi_{40,21} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 \\ \chi_{40,23} & 1 & -i & i & -1 & -1 & i & -i & 1 & 1 & -i & i & -1 & -1 & i & -i & 1 \\ \chi_{40,27} & 1 & -i & -i & -1 & 1 & i & i & -1 & -1 & i & i & 1 & -1 & -i & -i & 1 \\ \chi_{40,29} & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 \\ \chi_{40,31} & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\ \chi_{40,33} & 1 & i & -i & -1 & 1 & i & -i & -1 & 1 & i & -i & -1 & 1 & i & -i & -1 \\ \chi_{40,37} & 1 & i & i & -1 & -1 & i & i & 1 & -1 & -i & -i & 1 & 1 & -i & -i & -1 \\ \chi_{40,39} & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ \end{array} </math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Dirichlet character
(section)
Add topic