Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cross section (physics)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Dipole approximation for the scattering cross section === Let us assume that a particle supports only electric and magnetic dipole modes with polarizabilities <math display="inline">\mathbf{p} = \alpha^e \mathbf{E}</math> and <math display="inline">\mathbf{m} = (\mu \mu_0)^{-1}\alpha^m \mathbf{H}</math> (here we use the notation of magnetic polarizability in the manner of Bekshaev et al.<ref name="Bekshaev2013">{{cite journal | last=Bekshaev | first=A Ya | title=Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows | journal=Journal of Optics | volume=15 | issue=4 | date=2013-04-01 | issn=2040-8978 | doi=10.1088/2040-8978/15/4/044004 | page=044004| arxiv=1210.5730 | bibcode=2013JOpt...15d4004B | s2cid=119234614 }}</ref><ref name="Bliokh2014">{{cite journal | last1=Bliokh | first1=Konstantin Y. | last2=Bekshaev | first2=Aleksandr Y. | last3=Nori | first3=Franco | title=Extraordinary momentum and spin in evanescent waves | journal=Nature Communications | publisher=Springer Science and Business Media LLC | volume=5 | issue=1 | date=2014-03-06 | issn=2041-1723 | doi=10.1038/ncomms4300 | page=3300| pmid=24598730 | arxiv=1308.0547 | bibcode=2014NatCo...5.3300B | s2cid=15832637 | doi-access=free }}</ref> rather than the notation of Nieto-Vesperinas et al.<ref name="Nieto-Vesperinas2010">{{cite journal | last1=Nieto-Vesperinas | first1=M. | last2=Sáenz | first2=J. J. | last3=Gómez-Medina | first3=R. | last4=Chantada | first4=L. | title=Optical forces on small magnetodielectric particle | journal=Optics Express | publisher=The Optical Society | volume=18 | issue=11 | date=2010-05-14 | pages=11428–11443 | issn=1094-4087 | doi=10.1364/oe.18.011428 | pmid=20589003 | bibcode=2010OExpr..1811428N | doi-access=free }}</ref>) expressed through the Mie coefficients as <math display="block"> \alpha^e = 4 \pi \varepsilon_0 \cdot i \frac{3 \varepsilon}{2 k^3} a_1, \qquad \alpha^m = 4 \pi \mu_0 \cdot i \frac{3 \mu}{2 k^3} b_1. </math> Then the cross sections are given by <math display="block"> \sigma_{\text{ext}} = \sigma_{\text{ext}}^{\text{(e)}} + \sigma_{\text{ext}}^{\text{(m)}} = \frac{1}{4\pi \varepsilon \varepsilon_0} \cdot 4\pi k \Im(\alpha^e) + \frac{1}{4\pi \mu \mu_0} \cdot 4\pi k \Im(\alpha^m) </math> <math display="block"> \sigma_{\text{sc}} = \sigma_{\text{sc}}^{\text{(e)}} + \sigma_{\text{sc}}^{\text{(m)}} = \frac{1}{(4\pi \varepsilon \varepsilon_0)^2} \cdot \frac{8\pi}{3} k^4 |\alpha^e|^2 + \frac{1}{(4\pi \mu \mu_0)^2} \cdot \frac{8\pi}{3} k^4 |\alpha^m|^2 </math> and, finally, the electric and magnetic absorption cross sections <math display="inline">\sigma_{\text{abs}} = \sigma_{\text{abs}}^{\text{(e)}} + \sigma_{\text{abs}}^{\text{(m)}}</math> are <math display="block"> \sigma_{\text{abs}}^{\text{(e)}} = \frac{1}{4 \pi \varepsilon \varepsilon_0} \cdot 4\pi k \left[ \Im(\alpha^e) - \frac{k^3}{6 \pi \varepsilon \varepsilon_0} |\alpha^e|^2\right] </math> and <math display="block"> \sigma_{\text{abs}}^{\text{(m)}} = \frac{1}{4 \pi \mu \mu_0} \cdot 4\pi k \left[ \Im(\alpha^m) - \frac{k^3}{6 \pi \mu \mu_0} |\alpha^m|^2\right] </math> For the case of a no-inside-gain particle, i.e. no energy is emitted by the particle internally (<math display="inline">\sigma_{\text{abs}} > 0</math>), we have a particular case of the [[Optical theorem]] <math display="block"> \frac{1}{4\pi \varepsilon \varepsilon_0} \Im(\alpha^e) + \frac{1}{4\pi \mu \mu_0} \Im(\alpha^m) \geq \frac{2 k^3}{3} \left[ \frac{|\alpha^e|^2}{(4\pi \varepsilon \varepsilon_0)^2} + \frac{|\alpha^m|^2}{(4\pi \mu \mu_0)^2} \right] </math> Equality occurs for non-absorbing particles, i.e. for <math display="inline">\Im(\varepsilon) = \Im(\mu) = 0</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cross section (physics)
(section)
Add topic