Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Convex set
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Blaschke-Santaló diagrams === The set <math>\mathcal{K}^2</math> of all planar convex bodies can be parameterized in terms of the convex body [[Diameter of a set|diameter]] ''D'', its inradius ''r'' (the biggest circle contained in the convex body) and its circumradius ''R'' (the smallest circle containing the convex body). In fact, this set can be described by the set of inequalities given by<ref name=":0">{{Cite journal|last=Santaló|first=L.|date=1961|title=Sobre los sistemas completos de desigualdades entre tres elementos de una figura convexa planas|journal=Mathematicae Notae|volume=17|pages=82–104}}</ref><ref name=":1">{{Cite journal|last1=Brandenberg|first1=René|last2=González Merino|first2=Bernardo|date=2017|title=A complete 3-dimensional Blaschke-Santaló diagram|url=http://mia.ele-math.com/20-22|journal=Mathematical Inequalities & Applications|language=en|issue=2|pages=301–348|doi=10.7153/mia-20-22|issn=1331-4343|doi-access=free|arxiv=1404.6808}}</ref> <math display=block>2r \le D \le 2R</math> <math display=block>R \le \frac{\sqrt{3}}{3} D</math> <math display=block>r + R \le D</math> <math display=block>D^2 \sqrt{4R^2-D^2} \le 2R (2R + \sqrt{4R^2 -D^2})</math> and can be visualized as the image of the function ''g'' that maps a convex body to the {{math|'''R'''<sup>2</sup>}} point given by (''r''/''R'', ''D''/2''R''). The image of this function is known a (''r'', ''D'', ''R'') Blachke-Santaló diagram.<ref name=":1" /> [[File:Blaschke-Santaló_diagram_for_planar_convex_bodies.pdf|alt=|center|thumb|673x673px|Blaschke-Santaló (''r'', ''D'', ''R'') diagram for planar convex bodies. <math>\mathbb{L}</math> denotes the line segment, <math>\mathbb{I}_{\frac{\pi}{3}}</math> the equilateral triangle, <math>\mathbb{RT}</math> the [[Reuleaux triangle]] and <math>\mathbb{B}_2</math> the unit circle.]] Alternatively, the set <math>\mathcal{K}^2</math> can also be parametrized by its width (the smallest distance between any two different parallel support hyperplanes), perimeter and area.<ref name=":0" /><ref name=":1" />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Convex set
(section)
Add topic