Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Binomial distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Median === In general, there is no single formula to find the [[median]] for a binomial distribution, and it may even be non-unique. However, several special results have been established: * If {{math|''np''}} is an integer, then the mean, median, and mode coincide and equal {{math|''np''}}.<ref>{{cite journal|last=Neumann|first=P.|year=1966|title=Über den Median der Binomial- and Poissonverteilung|journal=Wissenschaftliche Zeitschrift der Technischen Universität Dresden|volume=19|pages=29–33|language=de}}</ref><ref>Lord, Nick. (July 2010). "Binomial averages when the mean is an integer", [[The Mathematical Gazette]] 94, 331-332.</ref> * Any median {{math|''m''}} must lie within the interval <math>\lfloor np \rfloor\leq m \leq \lceil np \rceil</math>.<ref name="KaasBuhrman">{{cite journal|first1=R.|last1=Kaas|first2=J.M.|last2=Buhrman|title=Mean, Median and Mode in Binomial Distributions|journal=Statistica Neerlandica|year=1980|volume=34|issue=1|pages=13–18|doi=10.1111/j.1467-9574.1980.tb00681.x}}</ref> * A median {{math|''m''}} cannot lie too far away from the mean:<math>|m-np|\leq \min\{{\ln2}, \max\{p,1-p\}\}</math> .<ref name="Hamza"> {{cite journal | last1 = Hamza | first1 = K. | doi = 10.1016/0167-7152(94)00090-U | title = The smallest uniform upper bound on the distance between the mean and the median of the binomial and Poisson distributions | journal = Statistics & Probability Letters | volume = 23 | pages = 21–25 | year = 1995 }}</ref> * The median is unique and equal to {{math|1=''m'' = [[Rounding|round]](''np'')}} when {{math|1={{abs|''m'' − ''np''}} ≤ min{{brace|''p'', 1 − ''p''}}}} (except for the case when {{math|1=''p'' = 1/2}} and {{math|''n''}} is odd).<ref name="KaasBuhrman"/> * When {{math|''p''}} is a rational number (with the exception of {{math|1=''p'' = 1/2}}\ and {{math|''n''}} odd) the median is unique.<ref name="Nowakowski"> {{cite journal | last1 = Nowakowski | first1 = Sz. | doi = 10.37418/amsj.10.4.9 | issn=1857-8365 | title = Uniqueness of a Median of a Binomial Distribution with Rational Probability | journal = Advances in Mathematics: Scientific Journal | volume = 10 | issue = 4 | pages = 1951–1958 | year = 2021 | arxiv = 2004.03280 | s2cid = 215238991 }}</ref> * When <math>p= \frac{1}{2} </math> and {{math|''n''}} is odd, any number {{math|''m''}} in the interval <math> \frac{1}{2} \bigl(n-1\bigr)\leq m \leq \frac{1}{2} \bigl(n+1\bigr)</math> is a median of the binomial distribution. If <math>p= \frac{1}{2} </math> and {{math|''n''}} is even, then <math>m= \frac{n}{2} </math> is the unique median. === Tail bounds === For {{math|''k'' ≤ ''np''}}, upper bounds can be derived for the lower tail of the cumulative distribution function <math>F(k;n,p) = \Pr(X \le k)</math>, the probability that there are at most {{math|''k''}} successes. Since <math>\Pr(X \ge k) = F(n-k;n,1-p) </math>, these bounds can also be seen as bounds for the upper tail of the cumulative distribution function for {{math|''k'' ≥ ''np''}}. [[Hoeffding's inequality]] yields the simple bound : <math> F(k;n,p) \leq \exp\left(-2 n\left(p-\frac{k}{n}\right)^2\right), \!</math> which is however not very tight. In particular, for {{math|1=''p'' = 1}}, we have that {{math|1=''F''(''k''; ''n'', ''p'') = 0}} (for fixed {{math|''k''}}, {{math|''n''}} with {{math|''k'' < ''n''}}), but Hoeffding's bound evaluates to a positive constant. A sharper bound can be obtained from the [[Chernoff bound]]:<ref name="ag">{{cite journal |first1=R. |last1=Arratia |first2=L. |last2=Gordon |title=Tutorial on large deviations for the binomial distribution |journal=Bulletin of Mathematical Biology |volume=51 |issue=1 |year=1989 |pages=125–131 |doi=10.1007/BF02458840 |pmid=2706397 |s2cid=189884382 }}</ref> : <math> F(k;n,p) \leq \exp\left(-nD\left(\frac{k}{n}\parallel p\right)\right) </math> where {{math|''D''(''a'' ∥ ''p'')}} is the [[Kullback–Leibler divergence|relative entropy (or Kullback-Leibler divergence)]] between an {{math|''a''}}-coin and a {{math|''p''}}-coin (i.e. between the {{math|Bernoulli(''a'')}} and {{math|Bernoulli(''p'')}} distribution): : <math> D(a\parallel p)=(a)\ln\frac{a}{p}+(1-a)\ln\frac{1-a}{1-p}. \!</math> Asymptotically, this bound is reasonably tight; see <ref name="ag"/> for details. One can also obtain ''lower'' bounds on the tail {{math|''F''(''k''; ''n'', ''p'')}}, known as anti-concentration bounds. By approximating the binomial coefficient with [[Stirling's approximation|Stirling's formula]] it can be shown that<ref>{{cite book |author1=Robert B. Ash |title=Information Theory |url=https://archive.org/details/informationtheor00ashr |url-access=limited |date=1990 |publisher=Dover Publications |page=[https://archive.org/details/informationtheor00ashr/page/n81 115]|isbn=9780486665214 }}</ref> : <math> F(k;n,p) \geq \frac{1}{\sqrt{8n\tfrac{k}{n}(1-\tfrac{k}{n})}} \exp\left(-nD\left(\frac{k}{n}\parallel p\right)\right),</math> which implies the simpler but looser bound : <math> F(k;n,p) \geq \frac1{\sqrt{2n}} \exp\left(-nD\left(\frac{k}{n}\parallel p\right)\right).</math> For {{math|1=''p'' = 1/2}} and {{math|''k'' ≥ 3''n''/8}} for even {{math|''n''}}, it is possible to make the denominator constant:<ref>{{cite web |last1=Matoušek |first1=J. |last2=Vondrak |first2=J. |title=The Probabilistic Method |work=lecture notes |url=https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f09/www/handouts/matousek-vondrak-prob-ln.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f09/www/handouts/matousek-vondrak-prob-ln.pdf |archive-date=2022-10-09 |url-status=live }}</ref> : <math> F(k;n,\tfrac{1}{2}) \geq \frac{1}{15} \exp\left(- 16n \left(\frac{1}{2} -\frac{k}{n}\right)^2\right). \!</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Binomial distribution
(section)
Add topic