Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Analysis of algorithms
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Constant factors== Analysis of algorithms typically focuses on the asymptotic performance, particularly at the elementary level, but in practical applications constant factors are important, and real-world data is in practice always limited in size. The limit is typically the size of addressable memory, so on 32-bit machines 2<sup>32</sup> = 4 GiB (greater if [[segmented memory]] is used) and on 64-bit machines 2<sup>64</sup> = 16 EiB. Thus given a limited size, an order of growth (time or space) can be replaced by a constant factor, and in this sense all practical algorithms are {{math|''O''(1)}} for a large enough constant, or for small enough data. This interpretation is primarily useful for functions that grow extremely slowly: (binary) [[iterated logarithm]] (log<sup>*</sup>) is less than 5 for all practical data (2<sup>65536</sup> bits); (binary) log-log (log log ''n'') is less than 6 for virtually all practical data (2<sup>64</sup> bits); and binary log (log ''n'') is less than 64 for virtually all practical data (2<sup>64</sup> bits). An algorithm with non-constant complexity may nonetheless be more efficient than an algorithm with constant complexity on practical data if the overhead of the constant time algorithm results in a larger constant factor, e.g., one may have <math>K > k \log \log n</math> so long as <math>K/k > 6</math> and <math>n < 2^{2^6} = 2^{64}</math>. For large data linear or quadratic factors cannot be ignored, but for small data an asymptotically inefficient algorithm may be more efficient. This is particularly used in [[hybrid algorithm]]s, like [[Timsort]], which use an asymptotically efficient algorithm (here [[merge sort]], with time complexity <math>n \log n</math>), but switch to an asymptotically inefficient algorithm (here [[insertion sort]], with time complexity <math>n^2</math>) for small data, as the simpler algorithm is faster on small data.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Analysis of algorithms
(section)
Add topic