Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Absolute magnitude
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== More advanced models ==== Because Solar System bodies are never perfect diffuse reflectors, astronomers use different models to predict apparent magnitudes based on known or assumed properties of the body.<ref name="Karttunen2016"/> For planets, approximations for the correction term <math>-2.5\log_{10}{q(\alpha)}</math> in the formula for {{mvar|m}} have been derived empirically, to match [[phase curve (astronomy)|observations at different phase angles]]. The approximations recommended by the [[Astronomical Almanac]]<ref name="Mallama_and_Hilton"/> are (with <math>\alpha</math> in degrees): {| class="wikitable" |- ! Planet ! Referenced calculation<ref name="IMCCE">{{cite web | title=Encyclopedia - the brightest bodies | website=IMCCE | url=https://promenade.imcce.fr/en/pages5/572.html | access-date=2023-05-29}}</ref> ! <math>H</math> ! Approximation for <math>-2.5\log_{10}{q(\alpha)}</math> |- | [[Mercury (planet)|Mercury]] | β0.4 | β0.613 | <math>+6.328\times10^{-2}\alpha - 1.6336\times10^{-3}\alpha^{2}+3.3644\times10^{-5}\alpha^{3}-3.4265\times10^{-7}\alpha^{4}+1.6893\times10^{-9}\alpha^{5}-3.0334\times10^{-12}\alpha^{6}</math> |- | [[Venus (planet)|Venus]] | β4.4 | β4.384 | * <math>-1.044\times10^{-3}\alpha+3.687\times10^{-4}\alpha^{2}-2.814\times10^{-6}\alpha^{3}+8.938\times10^{-9}\alpha^{4}</math> (for <math>0^{\circ}<\alpha \le 163.7^{\circ}</math>) * <math>+240.44228-2.81914\alpha+8.39034\times10^{-3}\alpha^{2}</math> (for <math>163.7^{\circ}<\alpha<179^{\circ}</math>) |- | [[Earth]] | β | β3.99 |<math>-1.060\times10^{-3}\alpha+2.054\times10^{-4}\alpha^{2}</math> |- | [[Moon]]<ref>{{Cite book|first=A.N.|last=Cox|year=2000|title=Allen's Astrophysical Quantities, fourth edition|publisher=Springer-Verlag|pages=310}}</ref> | 0.2 | +0.28 | * <math>+2.9994\times10^{-2}\alpha-1.6057\times10^{-4}\alpha^{2}+3.1543\times10^{-6}\alpha^{3}-2.0667\times10^{-8}\alpha^{4}+6.2553\times10^{-11}\alpha^{5}</math> (for <math>\alpha\le150^{\circ}</math>, before full Moon) * <math>+3.3234\times10^{-2}\alpha-3.0725\times10^{-4}\alpha^{2}+6.1575\times10^{-6}\alpha^{3}-4.7723\times10^{-8}\alpha^{4}+1.4681\times10^{-10}\alpha^{5}</math> (for <math>\alpha\le150^{\circ}</math>, after full Moon) |- | [[Mars (planet)|Mars]] | β1.5 | β1.601 | * <math>+2.267\times10^{-2}\alpha-1.302\times10^{-4}\alpha^{2}</math> (for <math>0^{\circ}<\alpha\le50^{\circ}</math>) * <math>+1.234-2.573\times10^{-2}\alpha+3.445\times10^{-4}\alpha^{2}</math> (for <math>50^{\circ}<\alpha\le120^{\circ}</math>) |- | [[Jupiter (planet)|Jupiter]] | β9.4 | β9.395 | * <math>-3.7\times10^{-4}\alpha+6.16\times10^{-4}\alpha^{2}</math> (for <math>\alpha\le12^{\circ}</math>) * <math>-0.033-2.5\log_{10}{\left(1-1.507\left(\frac{\alpha}{180^{\circ}}\right)-0.363\left(\frac{\alpha}{180^{\circ}}\right)^{2}-0.062\left(\frac{\alpha}{180^{\circ}}\right)^{3}+2.809\left(\frac{\alpha}{180^{\circ}}\right)^{4}-1.876\left(\frac{\alpha}{180^{\circ}}\right)^{5}\right)}</math> (for <math>\alpha>12^{\circ}</math>) |- | [[Saturn (planet)|Saturn]] | β9.7 | β8.914 | * <math>-1.825\sin{\left(\beta\right)}+2.6\times10^{-2}\alpha-0.378\sin{\left(\beta\right)}e^{-2.25\alpha}</math> (for planet and rings, <math>\alpha<6.5^{\circ}</math> and <math>\beta<27^{\circ}</math>) * <math>-0.036-3.7\times10^{-4}\alpha+6.16\times10^{-4}\alpha^{2}</math> (for the globe alone, <math>\alpha\le6^{\circ}</math>) * <math>+0.026+2.446\times10^{-4}\alpha+2.672\times10^{-4}\alpha^{2}-1.505\times10^{-6}\alpha^{3}+4.767\times10^{-9}\alpha^{4}</math> (for the globe alone, <math>6^{\circ}<\alpha<150^{\circ}</math>) |- | [[Uranus (planet)|Uranus]] | β7.2 | β7.110 |<math>-8.4\times10^{-4}\phi'+6.587\times10^{-3}\alpha+1.045\times10^{-4}\alpha^{2}</math> (for <math>\alpha < 3.1^{\circ}</math>) |- | [[Neptune (planet)|Neptune]] | β6.9 | β7.00 |<math>+7.944\times10^{-3}\alpha+9.617\times10^{-5}\alpha^{2}</math> (for <math>\alpha < 133^{\circ}</math> and <math>t > 2000.0</math>) |} {{Multiple image | header = The different halves of the Moon, as seen from Earth | image1 = Daniel Hershman - march moon (by).jpg | caption1 = Moon at first quarter | image2 = Waning gibbous moon near last quarter - 23 Sept. 2016.png | caption2 = Moon at last quarter }} Here <math>\beta</math> is the effective inclination of [[Saturn's rings]] (their tilt relative to the observer), which as seen from Earth varies between 0Β° and 27Β° over the course of one Saturn orbit, and <math>\phi'</math> is a small correction term depending on Uranus' sub-Earth and sub-solar latitudes. <math>t</math> is the [[Common Era]] year. Neptune's absolute magnitude is changing slowly due to seasonal effects as the planet moves along its 165-year orbit around the Sun, and the approximation above is only valid after the year 2000. For some circumstances, like <math>\alpha \ge 179^{\circ}</math> for Venus, no observations are available, and the phase curve is unknown in those cases. The formula for the Moon is only applicable to the [[near side of the Moon]], the portion that is visible from the Earth. Example 1: On 1 January 2019, [[Venus (planet)|Venus]] was <math>d_{BS}=0.719\text{ AU}</math> from the Sun, and <math>d_{BO} = 0.645\text{ AU}</math> from Earth, at a phase angle of <math>\alpha=93.0^{\circ}</math> (near quarter phase). Under full-phase conditions, Venus would have been visible at <math>m=-4.384+5\log_{10}{\left(0.719 \cdot 0.645\right)}=-6.09.</math> Accounting for the high phase angle, the correction term above yields an actual apparent magnitude of <math display="block">m = -6.09 + \left(-1.044 \times 10^{-3} \cdot 93.0 + 3.687\times10^{-4} \cdot 93.0^{2} - 2.814 \times 10^{-6} \cdot 93.0^{3} + 8.938 \times 10^{-9} \cdot 93.0^{4}\right) = -4.59.</math> This is close to the value of <math>m=-4.62</math> predicted by the Jet Propulsion Laboratory.<ref name="JPLHorizonsVenus"/> Example 2: At [[first quarter|first quarter phase]], the approximation for the Moon gives <math display="inline">-2.5\log_{10}{q(90^{\circ})}=2.71.</math> With that, the apparent magnitude of the Moon is <math display="inline">m = +0.28+5\log_{10}{\left(1\cdot0.00257\right)}+2.71= -9.96,</math> close to the expected value of about <math>-10.0</math>. At [[last quarter]], the Moon is about 0.06 mag fainter than at first quarter, because that part of its surface has a lower albedo. Earth's [[albedo]] varies by a factor of 6, from 0.12 in the cloud-free case to 0.76 in the case of [[altostratus clouds|altostratus cloud]]. The absolute magnitude in the table corresponds to an albedo of 0.434. Due to the variability of the [[weather]], Earth's apparent magnitude cannot be predicted as accurately as that of most other planets.<ref name="Mallama_and_Hilton"/>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Absolute magnitude
(section)
Add topic