Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Absolute convergence
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Rearrangements and unconditional convergence== ===Real and complex numbers=== When a series of real or complex numbers is absolutely convergent, any rearrangement or reordering of that series' terms will still converge to the same value. This fact is one reason absolutely convergent series are useful: showing a series is absolutely convergent allows terms to be paired or rearranged in convenient ways without changing the sum's value. The [[Riemann rearrangement theorem]] shows that the converse is also true: every real or complex-valued series whose terms cannot be reordered to give a different value is absolutely convergent. ===Series with coefficients in more general space=== The term [[unconditional convergence]] is used to refer to a series where any rearrangement of its terms still converges to the same value. For any series with values in a normed abelian group <math>G</math>, as long as <math>G</math> is complete, every series which converges absolutely also converges unconditionally. Stated more formally: {{math theorem| Let <math>G</math> be a normed abelian group. Suppose <math display="block">\sum_{i=1}^\infty a_i = A \in G, \quad \sum_{i=1}^\infty \|a_i\|<\infty.</math> If <math>\sigma : \N \to \N</math> is any permutation, then <math display="block">\sum_{i=1}^\infty a_{\sigma(i)}=A.</math>}} For series with more general coefficients, the converse is more complicated. As stated in the previous section, for real-valued and complex-valued series, unconditional convergence always implies absolute convergence. However, in the more general case of a series with values in any normed abelian group <math>G</math>, the converse does not always hold: there can exist series which are not absolutely convergent, yet unconditionally convergent. For example, in the [[Banach space]] β<sup>β</sup>, one series which is unconditionally convergent but not absolutely convergent is: <math display=block>\sum_{n=1}^\infty \tfrac{1}{n} e_n,</math> where <math>\{e_n\}_{n=1}^{\infty}</math> is an orthonormal basis. A theorem of [[Aryeh Dvoretzky|A. Dvoretzky]] and [[Claude Ambrose Rogers|C. A. Rogers]] asserts that every infinite-dimensional Banach space has an unconditionally convergent series that is not absolutely convergent.<ref>Dvoretzky, A.; Rogers, C. A. (1950), "Absolute and unconditional convergence in normed linear spaces", Proc. Natl. Acad. Sci. U.S.A. '''36''':192β197.</ref> ===Proof of the theorem=== For any <math>\varepsilon > 0,</math> we can choose some <math>\kappa_\varepsilon, \lambda_\varepsilon \in \N,</math> such that: <math display=block>\begin{align} \text{ for all } N > \kappa_\varepsilon &\quad \sum_{n=N}^\infty \|a_n\| < \tfrac{\varepsilon}{2} \\ \text{ for all } N > \lambda_\varepsilon &\quad \left\|\sum_{n=1}^N a_n - A\right\| < \tfrac{\varepsilon}{2} \end{align}</math> Let <math display=block>\begin{align} N_\varepsilon &=\max \left\{\kappa_\varepsilon, \lambda_\varepsilon \right\} \\ M_{\sigma,\varepsilon} &= \max \left\{\sigma^{-1}\left(\left\{ 1, \ldots, N_\varepsilon \right\}\right)\right\} \end{align}</math> where <math>\sigma^{-1}\left(\left\{1, \ldots, N_\varepsilon\right\}\right) = \left\{\sigma^{-1}(1), \ldots, \sigma^{-1}\left(N_\varepsilon\right)\right\}</math> so that <math>M_{\sigma,\varepsilon}</math> is the smallest natural number such that the list <math>a_{\sigma(1)}, \ldots, a_{\sigma\left(M_{\sigma,\varepsilon}\right)}</math> includes all of the terms <math>a_1, \ldots, a_{N_\varepsilon}</math> (and possibly others). Finally for any [[integer]] <math> N > M_{\sigma,\varepsilon}</math> let <math display=block>\begin{align} I_{\sigma,\varepsilon} &= \left\{ 1,\ldots,N \right\}\setminus \sigma^{-1}\left(\left \{ 1, \ldots, N_\varepsilon \right \}\right) \\ S_{\sigma,\varepsilon} &= \min \sigma\left(I_{\sigma,\varepsilon}\right) = \min \left\{\sigma(k) \ : \ k \in I_{\sigma,\varepsilon}\right\} \\ L_{\sigma,\varepsilon} &= \max \sigma\left(I_{\sigma,\varepsilon}\right) = \max \left\{\sigma(k) \ : \ k \in I_{\sigma,\varepsilon}\right\} \\ \end{align}</math> so that <math display="block">\begin{align} \left\|\sum_{i\in I_{\sigma,\varepsilon}} a_{\sigma(i)}\right\| &\leq \sum_{i \in I_{\sigma,\varepsilon}} \left\|a_{\sigma(i)}\right\| \\ &\leq \sum_{j = S_{\sigma,\varepsilon}}^{L_{\sigma,\varepsilon}} \left\|a_j\right\| && \text{ since } \sigma(I_{\sigma,\varepsilon}) \subseteq \left\{S_{\sigma,\varepsilon}, S_{\sigma,\varepsilon} + 1, \ldots, L_{\sigma,\varepsilon}\right\} \\ &\leq \sum_{j = N_\varepsilon + 1}^{\infty} \left\|a_j\right\| && \text{ since } S_{\sigma,\varepsilon} \geq N_{\varepsilon} + 1 \\ &< \frac{\varepsilon}{2} \end{align}</math> and thus <math display=block>\begin{align} \left\|\sum_{i=1}^N a_{\sigma(i)}-A \right\| &= \left\| \sum_{i \in \sigma^{-1}\left(\{ 1,\dots,N_\varepsilon \}\right)} a_{\sigma(i)} - A + \sum_{i\in I_{\sigma,\varepsilon}} a_{\sigma(i)} \right\| \\ &\leq \left\|\sum_{j=1}^{N_\varepsilon} a_j - A \right\| + \left\|\sum_{i\in I_{\sigma,\varepsilon}} a_{\sigma(i)} \right\| \\ &< \left\|\sum_{j=1}^{N_\varepsilon} a_j - A \right\| + \frac{\varepsilon}{2}\\ &< \varepsilon \end{align}</math> This shows that <math display=block>\text{ for all } \varepsilon > 0, \text{ there exists } M_{\sigma,\varepsilon}, \text{ for all } N > M_{\sigma,\varepsilon} \quad \left\|\sum_{i=1}^N a_{\sigma(i)} - A\right\| < \varepsilon,</math> that is: <math display=block>\sum_{i=1}^\infty a_{\sigma(i)} = A.</math> [[Q.E.D.]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Absolute convergence
(section)
Add topic