Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Wave function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Relations between position and momentum representations === The {{math|''x''}} and {{math|''p''}} representations are <math display="block">\begin{align} |\Psi\rangle = I|\Psi\rangle &= \int |x\rangle \langle x|\Psi\rangle dx = \int \Psi(x) |x\rangle dx,\\ |\Psi\rangle = I|\Psi\rangle &= \int |p\rangle \langle p|\Psi\rangle dp = \int \Phi(p) |p\rangle dp. \end{align}</math> Now take the projection of the state {{math|Ψ}} onto eigenfunctions of momentum using the last expression in the two equations, <math display="block">\int \Psi(x) \langle p|x\rangle dx = \int \Phi(p') \langle p|p'\rangle dp' = \int \Phi(p') \delta(p-p') dp' = \Phi(p).</math> Then utilizing the known expression for suitably normalized eigenstates of momentum in the position representation solutions of the [[Free_particle#Mathematical_description|free Schrödinger equation]] <math display="block">\langle x | p \rangle = p(x) = \frac{1}{\sqrt{2\pi\hbar}}e^{\frac{i}{\hbar}px} \Rightarrow \langle p | x \rangle = \frac{1}{\sqrt{2\pi\hbar}}e^{-\frac{i}{\hbar}px},</math> one obtains <math display="block">\Phi(p) = \frac{1}{\sqrt{2\pi\hbar}}\int \Psi(x)e^{-\frac{i}{\hbar}px}dx\,.</math> Likewise, using eigenfunctions of position, <math display="block">\Psi(x) = \frac{1}{\sqrt{2\pi\hbar}}\int \Phi(p)e^{\frac{i}{\hbar}px}dp\,.</math> The position-space and momentum-space wave functions are thus found to be [[Fourier transform]]s of each other.{{sfn|Griffiths|2004}} They are two representations of the same state; containing the same information, and either one is sufficient to calculate any property of the particle. In practice, the position-space wave function is used much more often than the momentum-space wave function. The potential entering the relevant equation (Schrödinger, Dirac, etc.) determines in which basis the description is easiest. For the [[harmonic oscillator]], {{mvar|x}} and {{mvar|p}} enter symmetrically, so there it does not matter which description one uses. The same equation (modulo constants) results. From this, with a little bit of afterthought, it follows that solutions to the wave equation of the harmonic oscillator are eigenfunctions of the Fourier transform in {{math|''L''<sup>2</sup>}}.<ref group=nb>The Fourier transform viewed as a unitary operator on the space {{math|''L''<sup>2</sup>}} has eigenvalues {{math|±1, ±''i''}}. The eigenvectors are "Hermite functions", i.e. [[Hermite polynomials]] multiplied by a [[Gaussian function]]. See {{harvtxt|Byron|Fuller|1992}} for a description of the Fourier transform as a unitary transformation. For eigenvalues and eigenvalues, refer to Problem 27 Ch. 9.</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Wave function
(section)
Add topic