Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Vitamin C
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Sources== Although also present in other plant-derived foods, the richest natural sources of vitamin C are fruits and vegetables.<ref name=NIH2021/><ref name=lpi2018 /> Vitamin C is the most widely taken [[dietary supplement]].<ref name=lpi2018 /> ===Plant sources=== {{For|vitamin C content in ten common staple foods such as corn, rice, and wheat|Staple food#Nutrition}} The following table is approximate and shows the relative abundance in different raw plant sources.<ref name=NIH2021/><ref name=lpi2018/><ref name="USDA Nutrient Data Laboratory, the Food and Nutrition Information Center and Information Systems Division of the National Agricultural Library.">{{cite web |url=https://fdc.nal.usda.gov/ |title=NDL/FNIC food composition database home page |access-date=30 November 2014 |publisher=USDA Nutrient Data Laboratory, the Food and Nutrition Information Center and Information Systems Division of the National Agricultural Library. |archive-date=January 15, 2023 |archive-url=https://web.archive.org/web/20230115162310/http://fdc.nal.usda.gov/ |url-status=live }}</ref> The amount is given in milligrams per 100 grams of the edible portion of the fruit or vegetable: <div style="float:left; padding: 1em;"> {|class="wikitable" |- !Raw plant source<ref name=USDA-NDL>{{cite web |url=https://www.nal.usda.gov/sites/www.nal.usda.gov/files/vitamin_c.pdf |title=USDA national nutrient database for standard reference legacy: vitamin C |date=2018 |website=U.S. Department of Agriculture, Agricultural Research Service |access-date=September 27, 2020 |archive-date=November 18, 2021 |archive-url=https://web.archive.org/web/20211118013136/https://www.nal.usda.gov/sites/www.nal.usda.gov/files/vitamin_c.pdf |url-status=live }}</ref> !Amount<br /> (mg / 100g) |- |[[Terminalia ferdinandiana|Kakadu plum]] || 1000–5300<ref name="Brand-1987">{{cite journal |title=The nutritional composition of Australian aboriginal bushfoods. I |year=1987 |vauthors=Brand JC, Rae C, McDonnell J, Lee A, Cherikoff V, Truswell AS |journal=Food Technology in Australia |volume=35 |issue=6 |pages=293–6 }}</ref> |- |[[Camu camu]] || 2800<ref name="pmid11464674">{{cite journal | vauthors = Justi KC, Visentainer JV, Evelázio de Souza N, Matsushita M | title = Nutritional composition and vitamin C stability in stored camu-camu (''Myrciaria dubia'') pulp | journal = Archivos Latinoamericanos de Nutricion | volume = 50 | issue = 4 | pages = 405–8 | date = December 2000 | pmid = 11464674 }}</ref> |- |[[Acerola]] || 1677<ref name="Vendramini-2000">{{cite journal |title=Chemical composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity |vauthors=Vendramini AL, Trugo LC |journal=Food Chemistry |volume=71 |issue=2 |year=2000 |pages=195–8 |doi=10.1016/S0308-8146(00)00152-7 }}</ref> |- |[[Indian gooseberry]] || 445<ref name="Begum-2008">{{cite book | vauthors = Begum RM |title=A textbook of foods, nutrition & dietetics |date=2008 |publisher=Sterling Publishers Pvt. Ltd |isbn=978-81-207-3714-3 |page=72 |url=https://books.google.com/books?id=tMNnaw3lN7oC&pg=PP82}}</ref><ref name="Sinha-2012">{{cite book | vauthors = Sinha N, Sidhu J, Barta J, Wu J, Cano MP |title=Handbook of fruits and fruit processing |date=2012 |publisher=John Wiley & Sons |isbn=978-1-118-35263-2 |url=https://books.google.com/books?id=1qwuBXeczzgC&pg=PT1734}}</ref> |- |[[Rose hip]] || 426 |- |[[Common sea-buckthorn]] || 400<ref name="pmid19021790">{{cite journal|vauthors=Gutzeit D, Baleanu G, Winterhalter P, Jerz G|date=2008|title=Vitamin C content in sea buckthorn berries (Hippophaë rhamnoides L. ssp . rhamnoides) and related products: A kinetic study on storage stability and the determination of processing effects|journal=J Food Sci|volume=73|issue=9|pages=C615–C20|doi=10.1111/j.1750-3841.2008.00957.x|pmid=19021790}}</ref> |- |[[Guava]] || 228 |- |[[Blackcurrant]] || 200 |- |Yellow [[Bell pepper|bell pepper/capsicum]] || 183 |- |Red [[Bell pepper|bell pepper/capsicum]] || 128 |- |[[Kale]] || 120 |- |[[Broccoli]] || 90 |- |[[Kiwifruit]] || 90 |} </div> <div style="float:left; padding: 1em;"> {|class="wikitable" |- !Raw plant source<ref name=USDA-NDL /> !Amount<br /> (mg / 100g) |- |Green [[Bell pepper|bell pepper/capsicum]] ||80 |- |[[Brussels sprout]]s || 80 |- |[[Loganberry]], [[redcurrant]] ||80 |- |[[Cloudberry]], [[elderberry]] || 60 |- |[[Strawberry]] || 60 |- |[[Papaya]] || 60 |- |[[Orange (fruit)|Orange]], [[lemon]] || 53 |- |[[Cauliflower]] || 48 |- |[[Pineapple]] || 48 |- |[[Cantaloupe]] || 40 |- |[[Passion fruit]], [[raspberry]] || 30 |- |[[Grapefruit]], [[Lime (fruit)|lime]] || 30 |- |[[Cabbage]], [[spinach]] || 30 |} </div> <div style="float:left; padding: 1em;"> {|class="wikitable" |- !Raw plant source<ref name=USDA-NDL /> !Amount<br /> (mg / 100g) |- |[[Mango]] || 28 |- |[[Blackberry]], [[cassava]] || 21 |- |[[Potato]] || 20 |- |[[Honeydew melon]] || 20 |- |[[Tomato]] || 14 |- |[[Cranberry]] || 13 |- |[[Blueberry]], [[grape]] || 10 |- |[[Apricot]], [[plum]], [[watermelon]] || 10 |- |[[Avocado]] || 8.8 |- |[[Onion]] || 7.4 |- |[[Cherry]], [[peach]] || 7 |- |[[Apple]] || 6 |- |[[Carrot]], [[asparagus]] || 6 |} </div>{{Clear}} ===Animal sources=== Animal-sourced foods do not generally provide much vitamin C, and what there is largely destroyed by heat during cooking. For example, raw chicken liver contains 17.9 mg/100 g, but fried, the content is reduced to 2.7 mg/100 g. Vitamin C is present in [[Breastfeeding#Benefits|human breast milk]] at 5.0 mg/100 g. Cow's milk contains 1.0 mg/100 g, but the heat of pasteurization destroys it.<ref name="Clark-2007">{{cite web |url=http://www.saanendoah.com/compare.html |title= Comparing milk: human, cow, goat & commercial infant formula |access-date=February 28, 2007 |date=8 January 2007 | vauthors = Clark S |publisher=[[Washington State University]] |url-status=usurped |archive-url=https://web.archive.org/web/20070129024619/http://www.saanendoah.com/compare.html |archive-date=January 29, 2007}}</ref> ===Food preparation=== Vitamin C [[chemical decomposition|chemically decomposes]] under certain conditions, many of which may occur during the cooking of food. Vitamin C concentrations in various food substances decrease with time in proportion to the temperature at which they are stored.<ref name="pmid7621082">{{cite journal | vauthors = Roig MG, Rivera ZS, Kennedy JF | title = A model study on rate of degradation of L-ascorbic acid during processing using home-produced juice concentrates | journal = International Journal of Food Sciences and Nutrition | volume = 46 | issue = 2 | pages = 107–15 | date = May 1995 | pmid = 7621082 | doi = 10.3109/09637489509012538 }}</ref> Cooking can reduce the vitamin C content of vegetables by around 60%, possibly due to increased enzymatic destruction.<ref name="pmid14801407">{{cite journal | vauthors = Allen MA, Burgess SG | title = The losses of ascorbic acid during the large-scale cooking of green vegetables by different methods | journal = The British Journal of Nutrition | volume = 4 | issue = 2–3 | pages = 95–100 | year = 1950 | pmid = 14801407 | doi = 10.1079/BJN19500024 | doi-access = free | title-link = doi }}</ref> Longer cooking times may add to this effect.<ref name="Oxford">{{cite web |url=http://physchem.ox.ac.uk/MSDS/AS/ascorbic_acid.html |title=Safety (MSDS) data for ascorbic acid |access-date=February 21, 2007 |date=October 9, 2005 |publisher=[[Oxford University]] |url-status=live |archive-url=https://archive.today/20070209221915/http://physchem.ox.ac.uk/MSDS/AS/ascorbic_acid.html |archive-date=February 9, 2007 }}</ref> Another cause of vitamin{{nbsp}}C loss from food is [[Leaching (chemistry)|leaching]], which transfers vitamin{{nbsp}}C to the cooking water, which is decanted and not consumed.<ref name=VitCFort1997/> ===Supplements=== Vitamin C dietary supplements are available as tablets, capsules, drink mix packets, in multi-vitamin/mineral formulations, in antioxidant formulations, and as crystalline powder.<ref name=AHFS2016>{{cite web |title=Ascorbic acid (Monograph) |url=https://www.drugs.com/monograph/ascorbic-acid.html |publisher=The American Society of Health-System Pharmacists |access-date=December 8, 2016 |url-status=live |archive-url=https://web.archive.org/web/20161230161611/https://www.drugs.com/monograph/ascorbic-acid.html |archive-date=December 30, 2016 }}</ref> Vitamin C is also added to some fruit juices and juice drinks. Tablet and capsule content ranges from 25 mg to 1500 mg per serving. The most commonly used supplement compounds are ascorbic acid, sodium ascorbate and calcium ascorbate.<ref name=AHFS2016 /> Vitamin C molecules can also be bound to the fatty acid palmitate, creating [[ascorbyl palmitate]], or else incorporated into liposomes.<ref name="pmid27375360">{{cite journal | vauthors = Davis JL, Paris HL, Beals JW, Binns SE, Giordano GR, Scalzo RL, Schweder MM, Blair E, Bell C | title = Liposomal-encapsulated ascorbic acid: influence on vitamin C bioavailability and capacity to protect against ischemia-reperfusion injury | journal = Nutrition and Metabolic Insights | volume = 9 | pages = 25–30 | year = 2016 | pmid = 27375360 | pmc = 4915787 | doi = 10.4137/NMI.S39764 }}</ref> ===Food fortification=== Countries fortify foods with nutrients to address known deficiencies.<ref name=WhyFortify>{{cite web |url=https://www.ffinetwork.org/savelives |title=Why fortify? |website=Food Fortification Initiative |date=December 2023 |access-date=January 3, 2024 |archive-date=March 8, 2023 |archive-url=https://web.archive.org/web/20230308151817/https://www.ffinetwork.org/savelives |url-status=live }}</ref> While many countries mandate or have voluntary programs to fortify wheat flour, maize (corn) flour or rice with vitamins,<ref name=Map>{{cite web|url=https://fortificationdata.org/map-number-of-nutrients/|title=Map: Count of nutrients in fortification standards|website=Global Fortification Data Exchange|access-date=January 3, 2024|archive-date=April 11, 2019|archive-url=https://web.archive.org/web/20190411123853/https://fortificationdata.org/map-number-of-nutrients/|url-status=live}}</ref> none include vitamin C in those programs.<ref name=Map/> As described in ''Vitamin C Fortification of Food Aid Commodities'' (1997), the United States provides rations to international food relief programs, later under the auspices of the [[Food for Peace|Food for Peace Act]] and the Bureau for Humanitarian Assistance.<ref name="USAID-2023">{{cite web|title=USAID's Bureau for Humanitarian Assistance website|date=November 21, 2023 |url=https://www.usaid.gov/who-we-are/organization/bureaus/bureau-humanitarian-assistance|archive-url=https://web.archive.org/web/20200813170934/https://www.usaid.gov/who-we-are/organization/bureaus/bureau-humanitarian-assistance|url-status=dead|archive-date=August 13, 2020}}</ref> Vitamin C is added to corn-soy blend and wheat-soy blend products at 40 mg/100 grams. (along with minerals and other vitamins). Supplemental rations of these highly fortified, blended foods are provided to refugees and displaced persons in camps and to beneficiaries of development feeding programs that are targeted largely toward mothers and children.<ref name=VitCFort1997>{{cite book |chapter-url=https://www.ncbi.nlm.nih.gov/books/NBK230149/ |title=Vitamin C fortification of food aid commodities: final report |chapter=Introduction |date=1997 |publisher=National Academies Press (US) |access-date=January 3, 2024 |archive-date=January 21, 2024 |archive-url=https://web.archive.org/web/20240121044202/https://www.ncbi.nlm.nih.gov/books/NBK230149/ |url-status=live }}</ref> The report adds: "The stability of vitamin C (L-ascorbic acid) is of concern because this is one of the most labile vitamins in foods. Its main loss during processing and storage is from oxidation, which is accelerated by light, oxygen, heat, increased pH, high moisture content (water activity), and the presence of copper or ferrous salts. To reduce oxidation, the vitamin C used in commodity fortification is coated with ethyl cellulose (2.5 percent). Oxidative losses also occur during food processing and preparation, and additional vitamin C may be lost if it dissolves into cooking liquid and is then discarded."<ref name=VitCFort1997/>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Vitamin C
(section)
Add topic