Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Van der Waerden's theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Ergodic theory == Furstenberg and Weiss proved an equivalent form of the theorem in 1978, using ergodic theory.<ref name=":0">{{Cite book |last=Petersen |first=Karl E. |url=https://www.cambridge.org/core/books/ergodic-theory/4F50E2830B2812125F24D4A2CE7318D0 |title=Ergodic Theory |date=1983 |publisher=Cambridge University Press |isbn=978-0-521-38997-6 |series=Cambridge Studies in Advanced Mathematics |location=Cambridge |chapter=Chapter 2.}}</ref> {{Math theorem|name=multiple Birkhoff recurrence theorem|note=Furstenberg and Weiss, 1978|math_statement= If <math display="inline">X</math> is a compact metric space, and <math display="inline">T_1, \dots, T_N: X \to X</math> are homeomorphisms that commute, then <math display="inline">\exists x\in X</math>, and an increasing sequence <math display="inline">n_1 < n_2 < \cdots</math>, such that <math display="block">\lim_{j} d(T_i^{n_j} x, x) = 0, \quad \forall i \in 1:N</math> }}The proof of the above theorem is delicate, and the reader is referred to.<ref name=":0" /> With this recurrence theorem, the van der Waerden theorem can be proved in the ergodic-theoretic style.{{Math theorem|name=Theorem|note=van der Waerden, 1927|math_statement= If <math display="inline">\Z</math> is partitioned into finitely many subsets <math display="inline">S_1, \dots, S_n</math>, then one of them <math display="inline">S_k</math> contains infinitely many arithmetic progressions of arbitrarily long length <math display="block"> \forall N, N', \; \exists |a| \geq N', \exists r \geq 1: \{a + ir\}_{i \in 1:N} \subset S_k</math> }} {{Math proof|title=Proof|note=Furstenberg and Weiss, 1978|proof= It suffices to show that for each length <math display="inline">N</math>, there exist at least one partition that contains at least one arithmetic progression of length <math display="inline">N</math>.Once this is proved, we can cut out that arithmetic progression into <math display="inline">N</math> singleton sets, and repeat the process to create another arithmetic progression, and so one of the partitions contain infinitely many arithmetic progressions of length <math display="inline">N</math>. Then we can repeat this process to find that there exists at least one partition that contains infinitely many progressions of length <math display="inline">N</math>, for infinitely many <math display="inline">N</math>, and that is the partition we want. Consider the state space <math display="inline">\Omega = (1:N)^\Z</math>, which is compact under the metric (in fact, ultrametric) <math display="block"> d( (x_i), (y_i)) = \max\{2^{-\vert{i}\vert} : x_i \neq y_i\}. </math> Since the sets <math display="inline">S_1, \dots, S_n</math> partition <math display="inline">\Z</math>, we have a well-defined sequence <math display="inline">z = (\dots, z_{-1}, z_0, z_1, \dots) = (z_i)_i</math> with <math display="inline">i\in S_{z_i}</math> for all <math display="inline">i</math>. Let <math display="inline">T: \Omega \to \Omega</math> be the shift map <math display="block">T((x_i)_i) = (x_{i+1})_i,</math> and let <math display="inline">X = cl(\{T^r z : r \in \Z\})</math> be the closure of all shifts of the sequence <math display="inline">z</math>. By the multiple Birkhoff recurrence theorem (for the maps <math display="inline">T, T^2, \dots, T^N</math>), there exist a sequence <math display="inline">x \in X</math> and an integer <math display="inline">s \geq 1</math> such that <math display="block">d(T^s x, x), d(T^{2s} x, x), \dots, d(T^{Ns} x, x) < \frac{1}{4}.</math> Since <math display="inline">X</math> is the closure of shifts of <math display="inline">z</math>, and <math display="inline">T</math> is continuous, there exists a shift <math display="inline">T^m z</math> such that simultaneously, <math display="inline">x</math> is very close to <math display="inline">T^m z</math>, and <math display="inline">T^s x</math> is very close to <math display="inline">T^{s+m} z</math>, and so on: <math display="block">d( x, T^{m} z), d(T^{s} x, T^{m+s} z), \dots, d(T^{Ns} x, T^{m + Ns} z) < \frac{1}{4}.</math> By the triangle inequality, we then immediately have <math display="inline">d(T^{m + is} z, T^{m + js} z) < \frac{3}{4}</math> for <math display="inline">i, j = 0, \dots, N</math>. But by construction, any sequences <math display="inline">y, y'\in \Omega</math> with <math display="inline">d(y, y') < 1</math> must have <math display="inline">y_0 = {y'}\!\!{}_0</math>. Thus <math display="inline">z_m = z_{m+s} = \dots = z_{m+Ns}</math>, and so all <math display="inline">m, m+s, \dots, m+Ns</math> lie in the partition <math display="inline">S_{z_m}</math>. }}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Van der Waerden's theorem
(section)
Add topic