Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Triassic–Jurassic extinction event
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Central Atlantic Magmatic Province === [[File:CAMP Magmatism in the context of Pangea.jpg|left|thumb|218x218px|Maximum extent of [[Central Atlantic magmatic province|CAMP]] volcanism at the Triassic-Jurassic boundary]] The leading and best evidenced explanation for the TJME is massive volcanic eruptions, specifically from the [[Central Atlantic Magmatic Province]] (CAMP),<ref>{{cite journal |last1=Ernst |first1=Richard E. |last2=Youbi |first2=Nasrrddine |date=15 July 2017 |title=How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018217302857 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=478 |pages=30–52 |doi=10.1016/j.palaeo.2017.03.014 |bibcode=2017PPP...478...30E |access-date=28 May 2023}}</ref><ref name="DeenenEtAl2010">{{cite journal |last1=Deenen |first1=M. H. L. |last2=Ruhl |first2=M. |last3=Bonis |first3=N. R. |last4=Krijgsman |first4=W. |last5=Kuerschner |first5=W. M. |last6=Reitsma |first6=M. |last7=Van Bergen |first7=M. J. |date=1 March 2010 |title=A new chronology for the end-Triassic mass extinction |url=https://www.sciencedirect.com/science/article/abs/pii/S0012821X1000021X |journal=[[Earth and Planetary Science Letters]] |volume=291 |issue=1–4 |pages=113–125 |doi=10.1016/j.epsl.2010.01.003 |bibcode=2010E&PSL.291..113D |access-date=15 November 2022}}</ref><ref>{{cite journal |last1=Whalen |first1=Lisa |last2=Gazel |first2=Esteban |last3=Vidito |first3=Christopher |last4=Puffer |first4=John |last5=Bizinis |first5=Michael |last6=Henika |first6=William |last7=Caddick |first7=Mark J. |date=3 September 2015 |title=Supercontinental inheritance and its influence on supercontinental breakup: The Central Atlantic Magmatic Province and the breakup of Pangea |journal=[[Paleoceanography and Paleoclimatology]] |volume=16 |issue=10 |pages=3532–3554 |doi=10.1002/2015GC005885 |bibcode=2015GGG....16.3532W |s2cid=129223849 |doi-access=free |hdl=10919/71423 |hdl-access=free }}</ref> the largest known [[large igneous province]] by area, and one of the most voluminous,<ref>{{cite book |last=McHone |first=J. Gregory |editor-last1=Hames |editor-first1=W. |editor-last2=Mchone |editor-first2=J. G. |editor-last3=Renne |editor-first3=P. |editor-last4=Ruppel |editor-first4=C. |date=1 January 2003 |title=The Central Atlantic Magmatic Province: Insights from Fragments of Pangea, Volume 136 |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/136GM013 |publisher=American Geophysical Union |page=241 |doi=10.1029/136GM013 |isbn=9781118668771}}</ref><ref>{{cite journal |last1=Marzen |first1=R. E. |last2=Shillington |first2=D. J. |last3=Lizarralde |first3=D. |last4=Knapp |first4=J. H. |last5=Heffner |first5=D. M. |last6=Davis |first6=J. K. |last7=Harder |first7=S. H. |date=7 July 2020 |title=Limited and localized magmatism in the Central Atlantic Magmatic Province |journal=[[Nature Communications]] |volume=11 |issue= 1|page=3397 |doi=10.1038/s41467-020-17193-6 |pmid=32636386 |pmc=7341742 |bibcode=2020NatCo..11.3397M }}</ref> with its flood basalts extending across parts of southwestern Europe,<ref>{{cite book |last1=Youbi |first1=Nasrrddine |last2=Tavares Martins |first2=Línia |last3=Munhá |first3=José Manuel |last4=Ibouh |first4=Hassan |last5=Madeira |first5=José |last6=Aït Chayeb |first6=El Houssaine |last7=El Boukhari |first7=Abdelmajid |editor-last1=Hames |editor-first1=W. |editor-last2=McHone |editor-first2=J. G. |editor-last3=Renne |editor-first3=Paul R. |editor-last4=Ruppel |editor-first4=C. |date=1 January 2003 |title=The Central Atlantic Magmatic Province: Insights from Fragments of Pangea |url=https://agupubs.onlinelibrary.wiley.com/doi/book/10.1029/GM136 |chapter=The Late Triassic-Early Jurassic Volcanism of Morocco and Portugal in the Framework of the Central Atlantic Magmatic Province: An Overview |chapter-url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/136GM010 |publisher=American Geophysical Union |pages=179–207 |doi=10.1029/136GM010 |isbn=9781118668771}}</ref><ref name="ChrystèleEtAl2007" /> northwestern Africa,<ref>{{cite journal |last1=Marzoli |first1=Andrea |last2=Bertrand |first2=Hervé |last3=Youbi |first3=Nasrrddine |last4=Callegaro |first4=Sara |last5=Merle |first5=Renaud |last6=Reisberg |first6=Laurie |last7=Chiaradia |first7=Massimo |last8=Brownlee |first8=Sarah I. |last9=Jourdan |first9=Fred |last10=Zanetti |first10=Alberto |last11=Davies |first11=Joshua H. F. L. |last12=Cuppone |first12=Tiberio |last13=Mahmoudi |first13=Abdelkader |last14=Medina |first14=Fida |last15=Renne |first15=Paul R. |last16=Bellieni |first16=Giuliano |last17=Crivellari |first17=Stefano |last18=El Hachimi |first18=Hind |last19=Bensalah |first19=Mohamed Khalil |last20=Meyzen |first20=Christine M. |last21=Tegner |first21=Christian |date=19 April 2019 |title=The Central Atlantic Magmatic Province (CAMP) in Morocco |url=https://academic.oup.com/petrology/article/60/5/945/5475177 |journal=[[Journal of Petrology]] |volume=50 |issue=6 |pages=945–996 |doi=10.1093/petrology/egz021 |access-date=28 May 2023|doi-access=free }}</ref> northeastern South America,<ref>{{Cite journal |last1=Rezende |first1=Gabriel L. |last2=Martins |first2=Cristiano Mendel |last3=Nogueira |first3=Afonso C. R. |last4=Domingos |first4=Fabio Garcia |last5=Ribeiro-Filho |first5=Nelson |date=1 June 2021 |title=Evidence for the Central Atlantic magmatic province (CAMP) in Precambrian and Phanerozoic sedimentary basins of the southern Amazonian Craton, Brazil |url=https://www.sciencedirect.com/science/article/pii/S0895981121000638 |journal=[[Journal of South American Earth Sciences]] |volume=108 |pages=103216 |doi=10.1016/j.jsames.2021.103216 |bibcode=2021JSAES.10803216R |s2cid=233565961 |issn=0895-9811 |access-date=12 January 2024 |via=Elsevier Science Direct}}</ref><ref>{{cite journal |last1=Rezende |first1=Gabriel L. |last2=Martins |first2=Cristiano Mendel |last3=Nogueira |first3=Afonso C. R. |last4=Domingos |first4=Fabio Garcia |last5=Ribeiro-Filho |first5=Nelson |date=June 2021 |title=Evidence for the Central Atlantic magmatic province (CAMP) in Precambrian and Phanerozoic sedimentary basins of the southern Amazonian Craton, Brazil |url=https://www.sciencedirect.com/science/article/abs/pii/S0895981121000638#! |journal=[[Journal of South American Earth Sciences]] |volume=108 |page=103216 |doi=10.1016/j.jsames.2021.103216 |bibcode=2021JSAES.10803216R |s2cid=233565961 |access-date=19 December 2022}}</ref><ref>{{cite book |last1=Marzoli |first1=Andrea |last2=Callegaro |first2=Sara |last3=Dal Corso |first3=Jacopo |last4=Davies |first4=Joshua H. F. L. |last5=Chiaradia |first5=Massimo |last6=Youbi |first6=Nasrrddine |last7=Bertrand |first7=Hervé |last8=Reisberg |first8=Laurie |last9=Merle |first9=Renaud |last10=Jourdan |first10=Fred |series=Topics in Geobiology |editor-last1=Tanner |editor-first1=Lawrence H. |date=16 November 2017 |volume=46 |title=The Late Triassic World: Earth in a Time of Transition |url=https://link.springer.com/book/10.1007/978-3-319-68009-5 |chapter=The Central Atlantic Magmatic Province (CAMP): A Review |chapter-url=https://link.springer.com/chapter/10.1007/978-3-319-68009-5_4 |publisher=Springer Cham |pages=91–125 |doi=10.1007/978-3-319-68009-5_4 |isbn=978-3-319-68009-5}}</ref> and southeastern North America.<ref name="HamesRenneRuppel2000" /><ref>{{cite journal |last1=Marzen |first1=R. E. |last2=Shillington |first2=D. J. |last3=Lizarralde |first3=D. |last4=Knapp |first4=J. H. |last5=Heffner |first5=D. M. |last6=Davis |first6=J. K. |last7=Harder |first7=S. H. |date=7 July 2020 |title=Limited and localized magmatism in the Central Atlantic Magmatic Province |journal=[[Nature Communications]] |volume=11 |issue=1 |page=3397 |doi=10.1038/s41467-020-17193-6 |pmid=32636386 |pmc=7341742 |bibcode=2020NatCo..11.3397M }}</ref><ref>{{cite journal |last1=Goldberg |first1=David S. |last2=Kent |first2=Dennis V. |last3=Olsen |first3=Paul E. |date=4 January 2010 |title=Potential on-shore and off-shore reservoirs for CO2 sequestration in Central Atlantic magmatic province basalts |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |volume=107 |issue=4 |pages=1327–1332 |doi=10.1073/pnas.0913721107 |pmid=20080705 |pmc=2824362 |bibcode=2010PNAS..107.1327G |doi-access=free }}</ref> The coincidence and synchrony of CAMP activity and the TJME is indicated by [[uranium-lead dating]],<ref>{{cite journal |last1=Schaltegger |first1=Urs |last2=Guex |first2=Jean |last3=Bartolini |first3=Annachiara |last4=Schoene |first4=Blair |last5=Ovtcharova |first5=Maria |date=1 March 2008 |title=Precise U–Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery |url=https://www.sciencedirect.com/science/article/abs/pii/S0012821X07007777 |journal=[[Earth and Planetary Science Letters]] |volume=166 |issue=1–2 |pages=266–275 |doi=10.1016/j.epsl.2007.11.031 |bibcode=2008E&PSL.267..266S |access-date=30 May 2023}}</ref><ref name="blackburn2013">{{cite journal|last1=Blackburn|first1=Terrence J.|last2=Olsen|first2=Paul E.|last3=Bowring|first3=Samuel A.|last4=McLean|first4=Noah M.|last5=Kent|first5=Dennis V|last6=Puffer|first6=John|last7=McHone|first7=Greg|last8=Rasbury|first8=Troy|last9=Et-Touhami7|first9=Mohammed|year=2013|title=Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province|url=http://www.personal.kent.edu/~alisonjs/paleo/Blackburn_2013Tr-JExtinctionChronology.pdf|journal=[[Science (journal)|Science]]|volume=340|issue=6135|pages=941–945|bibcode=2013Sci...340..941B|citeseerx=10.1.1.1019.4042|doi=10.1126/science.1234204|pmid=23519213|s2cid=15895416}}</ref> [[argon-argon dating]],<ref name="HamesRenneRuppel2000">{{cite journal |last1=Hames |first1=W. E. |last2=Renne |first2=Paul R. |last3=Ruppel |first3=C. |date=1 September 2000 |title=New evidence for geologically instantaneous emplacement of earliest Jurassic Central Atlantic magmatic province basalts on the North American margin |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/28/9/859/188925/New-evidence-for-geologically-instantaneous |journal=[[Geology (journal)|Geology]] |volume=28 |issue=9 |pages=859–862 |doi=10.1130/0091-7613(2000)28<859:NEFGIE>2.0.CO;2 |bibcode=2000Geo....28..859H |access-date=28 May 2023}}</ref><ref name="ChrystèleEtAl2007">{{cite journal |last1=Verati |first1=Chrystèle |last2=Rapaille |first2=Cédric |last3=Féraud |first3=Gilbert |last4=Marzoli |first4=Andrea |last5=Bertrand |first5=Hervé |last6=Youbi |first6=Nasrrddine |date=9 February 2007 |title=40Ar/39Ar ages and duration of the Central Atlantic Magmatic Province volcanism in Morocco and Portugal and its relation to the Triassic–Jurassic boundary |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018206004561 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=244 |issue=1–4 |pages=308–325 |doi=10.1016/j.palaeo.2006.06.033 |bibcode=2007PPP...244..308V |access-date=28 May 2023}}</ref> and [[paleomagnetism|palaeomagnetism]].<ref>{{cite journal |last1=Knight |first1=K. B. |last2=Nomade |first2=S. |last3=Renne |first3=Paul R. |last4=Marzoli |first4=Andrea |last5=Bertrand |first5=Hervé |last6=Youbi |first6=Nasrrddine |date=30 November 2004 |title=The Central Atlantic Magmatic Province at the Triassic–Jurassic boundary: paleomagnetic and 40Ar/39Ar evidence from Morocco for brief, episodic volcanism |url=https://www.sciencedirect.com/science/article/abs/pii/S0012821X04005667 |journal=[[Earth and Planetary Science Letters]] |volume=228 |issue=1–2 |pages=143–160 |doi=10.1016/j.epsl.2004.09.022 |bibcode=2004E&PSL.228..143K |access-date=28 May 2023}}</ref><ref>{{Cite journal |last1=Marzoli |first1=Andrea |last2=Bertrand |first2=Hervé |last3=Knight |first3=Kim B. |last4=Cirilli |first4=Simonetta |last5=Buratti |first5=Nicoletta |last6=Vérati |first6=Chrystèle |last7=Nomade |first7=Sébastien |last8=Renne |first8=Paul R. |last9=Youbi |first9=Nasrrddine |last10=Martini |first10=Rossana |last11=Allenbach |first11=Karin |last12=Neuwerth |first12=Ralph |last13=Rapaille |first13=Cédric |last14=Zaninetti |first14=Louisette |last15=Bellieni |first15=Giuliano |date=1 November 2004 |title=Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis |url=https://pubs.geoscienceworld.org/gsa/geology/article/32/11/973/103666/Synchrony-of-the-Central-Atlantic-magmatic |journal=[[Geology (journal)|Geology]] |language=en |volume=32 |issue=11 |pages=973 |doi=10.1130/G20652.1 |issn=0091-7613 |via=GeoScienceWorld}}</ref><ref name=":5" /> The isotopic composition of fossil soils and marine sediments near the boundary between the Late Triassic and Early Jurassic has been tied to a large negative [[δ13C|δ<sup>13</sup>C]] excursion,<ref name="HuFuLinSongWangTian2019">{{cite journal |last1=Hu |first1=Fangzhi |last2=Fu |first2=Xiugen |last3=Lin |first3=Li |last4=Song |first4=Chunyan |last5=Wang |first5=Zhongwei |last6=Tian |first6=Kangzhi |date=January 2020 |title=Marine Late Triassic-Jurassic carbon-isotope excursion and biological extinction records: New evidence from the Qiangtang Basin, eastern Tethys |url=https://www.sciencedirect.com/science/article/abs/pii/S0921818119305788 |journal=[[Global and Planetary Change]] |volume=185 |page=103093 |doi=10.1016/j.gloplacha.2019.103093 |bibcode=2020GPC...18503093H |s2cid=213355203 |access-date=7 November 2022}}</ref><ref>{{cite journal |last1=Pálfy |first1=József |last2=Demény |first2=Attila |last3=Haas |first3=János |last4=Hetényi |first4=Magdolna |last5=Orchard |first5=Michael J. |last6=Veto |first6=István |date=1 November 2001 |title=Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/29/11/1047/197882/Carbon-isotope-anomaly-and-other-geochemical |journal=[[Geology (journal)|Geology]] |volume=29 |issue=11 |pages=1047–1050 |doi=10.1130/0091-7613(2001)029<1047:CIAAOG>2.0.CO;2 |bibcode=2001Geo....29.1047P |access-date=2 April 2023}}</ref><ref>{{cite journal |last1=Hesselbo |first1=Stephen P. |last2=Korte |first2=Christophe |last3=Ullmann |first3=Clemens V. |last4=Ebbesen |first4=Anders L. |date=April 2020 |title=Carbon and oxygen isotope records from the southern Eurasian Seaway following the Triassic-Jurassic boundary: Parallel long-term enhanced carbon burial and seawater warming |url=https://www.sciencedirect.com/science/article/abs/pii/S0012825219306592 |journal=[[Earth-Science Reviews]] |volume=203 |page=103131 |doi=10.1016/j.earscirev.2020.103131 |bibcode=2020ESRv..20303131H |hdl=10871/40906 |s2cid=213462318 |access-date=28 May 2023|hdl-access=free }}</ref> with values as low as -2.8%.<ref>{{Cite journal |last1=Al-Suwaidi |first1=Aisha H. |last2=Steuber |first2=Thomas |last3=Suarez |first3=Marina B. |date=7 July 2016 |title=The Triassic–Jurassic boundary event from an equatorial carbonate platform (Ghalilah Formation, United Arab Emirates) |url=https://www.lyellcollection.org/doi/10.1144/jgs2015-102 |journal=[[Journal of the Geological Society]] |language=en |volume=173 |issue=6 |pages=949–953 |doi=10.1144/jgs2015-102 |issn=0016-7649 |via=Lyell Collection Geological Society Publications}}</ref> Carbon isotopes of hydrocarbons ([[Alkane|''n''-alkanes]]) derived from leaf wax and [[lignin]], and [[total organic carbon]] from two sections of lake sediments interbedded with the CAMP in eastern North America have shown carbon isotope excursions similar to those found in the mostly marine St. Audrie's Bay section, Somerset, England; the correlation suggests that the TJME began at the same time in marine and terrestrial environments, slightly before the oldest basalts in eastern North America but simultaneous with the eruption of the oldest flows in Morocco, with both a critical {{CO2}} greenhouse and a marine biocalcification crisis.<ref name="WhitesideEtAl2010">{{cite journal |last1=Whiteside |first1=Jessica H. |last2=Olsen |first2=Paul E. |last3=Eglington |first3=Timothy |last4=Brookfield |first4=Michael E. |last5=Sambrotto |first5=Raymond N. |date=22 March 2010 |title=Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=107 |issue=15 |pages=6721–6725 |bibcode=2010PNAS..107.6721W |doi=10.1073/pnas.1001706107 |pmc=2872409 |pmid=20308590 |doi-access=free}}</ref> Furthermore, chemostratigraphic analysis in the [[Junggar Basin]] has shown that the negative δ<sup>13</sup>C excursions associated with CAMP volcanism corresponded in time to biotic turnovers in the palynomorph record, strongly suggesting a causal relationship between the two.<ref>{{Cite journal |last=Zhang |first=Xiaolin |date=14 February 2024 |title=Constraining the Triassic–Jurassic boundary carbon cycle perturbations using high-resolution δ 13 C org records from the Haojiagou section in northwestern China |url=https://www.lyellcollection.org/doi/10.1144/SP538-2021-116 |journal=[[Geological Society, London, Special Publications]] |language=en |volume=538 |issue=1 |pages=97–113 |doi=10.1144/SP538-2021-116 |issn=0305-8719 |access-date=19 February 2025 |via=Lyell Collection Geological Society Publications}}</ref> Contemporaneous CAMP eruptions, mass extinction, and the carbon isotopic excursions are shown in the same places, making the case for a volcanic cause of a mass extinction.<ref>{{Cite journal |last1=Jeram |first1=Andrew J. |last2=Simms |first2=Michael J. |last3=Hesselbo |first3=Stephen P. |last4=Raine |first4=Robert |date=December 2021 |title=Carbon isotopes, ammonites and earthquakes: Key Triassic-Jurassic boundary events in the coastal sections of south-east County Antrim, Northern Ireland, UK |url=https://www.sciencedirect.com/science/article/pii/S0016787821000948 |journal=[[Proceedings of the Geologists' Association]] |volume=132 |issue=6 |pages=702–725 |doi=10.1016/j.pgeola.2021.10.004 |bibcode=2021PrGA..132..702J |s2cid=244698669 |issn=0016-7878 |access-date=10 November 2023}}</ref><ref>{{cite journal |last1=Hesselbo |first1=Stephen P. |last2=Robinson |first2=Stuart A. |last3=Surlyk |first3=Finn |last4=Piasecki |first4=Stefan |date=1 March 2002 |title=Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: A link to initiation of massive volcanism? |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/30/3/251/192348/Terrestrial-and-marine-extinction-at-the-Triassic |journal=[[Geology (journal)|Geology]] |volume=30 |issue=3 |pages=251–254 |doi=10.1130/0091-7613(2002)030<0251:TAMEAT>2.0.CO;2 |bibcode=2002Geo....30..251H |access-date=17 April 2023}}</ref><ref>{{cite journal |last1=Lindström |first1=Sofie |last2=Van de Schootbrugge |first2=Bas |last3=Hansen |first3=Katrine H. |last4=Pedersen |first4=Gunver Krarup |last5=Alsen |first5=Peter |last6=Thibault |first6=Nicolas |last7=Dybkjær |first7=Karen |last8=Bjerrum |first8=Christian J. |last9=Nielsen |first9=Lars Henrik |date=15 July 2017 |title=A new correlation of Triassic–Jurassic boundary successions in NW Europe, Nevada and Peru, and the Central Atlantic Magmatic Province: A time-line for the end-Triassic mass extinction |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018216308926 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=478 |pages=80–102 |doi=10.1016/j.palaeo.2016.12.025 |bibcode=2017PPP...478...80L |hdl=1874/351998 |s2cid=133353132 |access-date=27 August 2023|hdl-access=free }}</ref> The observed negative carbon isotope excursion is lower in some sites that correspond to what was then eastern Panthalassa because of the extreme aridity of western Pangaea limiting weathering and erosion there.<ref>{{cite journal |last1=Ruhl |first1=Micha |last2=Hesselbo |first2=Stephen P. |last3=Al-Suwaidi |first3=A. |last4=Jenkyns |first4=Hugh C. |last5=Damborenea |first5=S. E. |last6=Manceñido |first6=M. O. |last7=Storm |first7=M. |last8=Mather |first8=Tamsin A. |last9=Riccardi |first9=A. C. |date=September 2020 |title=On the onset of Central Atlantic Magmatic Province (CAMP) volcanism and environmental and carbon-cycle change at the Triassic–Jurassic transition (Neuquén Basin, Argentina) |url=https://www.sciencedirect.com/science/article/abs/pii/S0012825220302750 |journal=[[Earth-Science Reviews]] |volume=208 |page=103229 |doi=10.1016/j.earscirev.2020.103229 |bibcode=2020ESRv..20803229R |hdl=10871/121712 |s2cid=219913748 |access-date=17 April 2023|hdl-access=free }}</ref> The negative δ<sup>13</sup>C excursion associated with CAMP volcanism lasted for approximately 20,000 to 40,000 years, or about one or two of Earth's axial precession cycles,<ref>{{cite journal |last1=Ruhl |first1=Micha |last2=Deenen |first2=M. H. L. |last3=Abels |first3=H. A. |last4=Bonis |first4=N. R. |last5=Krijgsman |first5=W. |last6=Kürschner |first6=W. M. |date=15 June 2010 |title=Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St Audrie's Bay/East Quantoxhead, UK) |url=https://www.sciencedirect.com/science/article/abs/pii/S0012821X10002426 |journal=[[Earth and Planetary Science Letters]] |volume=295 |issue=1–2 |pages=262–276 |doi=10.1016/j.epsl.2010.04.008 |bibcode=2010E&PSL.295..262R |access-date=7 June 2023}}</ref> although the carbon cycle was so disrupted that it did not stabilise until the Sinemurian.<ref>{{cite journal |last1=Van de Schootbrugge |first1=Bas |last2=Payne |first2=Jonathan L. |last3=Tomasovych |first3=A. |last4=Pross |first4=J. |last5=Fiebig |first5=J. |last6=Benbrahim |first6=M. |last7=Föllmi |first7=Karl B. |last8=Quan |first8=T. M. |date=17 April 2008 |title=Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event |url=https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007GC001914 |journal=[[Geochemistry, Geophysics, Geosystems]] |volume=9 |issue=4 |pages=1–16 |doi=10.1029/2007GC001914 |bibcode=2008GGG.....9.4028V |s2cid=56000418 |access-date=7 June 2023}}</ref> Mercury anomalies from deposits in various parts of the world have further bolstered the volcanic cause hypothesis,<ref>{{cite journal |last1=Percival |first1=Lawrence M. E. |last2=Ruhl |first2=Micha |last3=Jenkyns |first3=Hugh C. |last4=Mather |first4=Tamsin A. |last5=Whiteside |first5=Jessica H. |date=19 June 2017 |title=Mercury evidence for pulsed volcanism during the end-Triassic mass extinction |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |volume=114 |issue=30 |pages=7929–7934 |doi=10.1073/pnas.1705378114 |pmid=28630294 |pmc=5544315 |bibcode=2017PNAS..114.7929P |doi-access=free }}</ref><ref>{{cite journal |last1=Shen |first1=Jun |last2=Yin |first2=Runsheng |last3=Zhang |first3=Shuang |last4=Algeo |first4=Thomas J. |last5=Bottjer |first5=David J. |last6=Yu |first6=Jianxin |last7=Xu |first7=Guozhen |last8=Penman |first8=Donald |last9=Wang |first9=Yongdong |last10=Li |first10=Liqin |last11=Shi |first11=Xiao |last12=Planavsky |first12=Noah J. |last13=Feng |first13=Qinglai |last14=Xie |first14=Shucheng |date=13 January 2022 |title=Intensified continental chemical weathering and carbon-cycle perturbations linked to volcanism during the Triassic–Jurassic transition |journal=[[Nature Communications]] |volume=13 |issue=1 |page=299 |doi=10.1038/s41467-022-27965-x |pmid=35027546 |pmc=8758789 |bibcode=2022NatCo..13..299S |s2cid=256689306 }}</ref> as have anomalies from various platinum-group elements.<ref name="PlatinumGroupElementsCAMP">{{cite journal |last1=Tegner |first1=Christian |last2=Marzoli |first2=Andrea |last3=McDonald |first3=Iain |last4=Youbi |first4=Nasrrddine |last5=Lindström |first5=Sofie |date=26 February 2020 |title=Platinum-group elements link the end-Triassic mass extinction and the Central Atlantic Magmatic Province |journal=[[Scientific Reports]] |volume=10 |issue=1 |page=3482 |bibcode=2020NatSR..10.3482T |doi=10.1038/s41598-020-60483-8 |pmc=7044291 |pmid=32103087}}</ref> Nickel enrichments are also observed at the Triassic-Jurassic boundary coevally with light carbon enrichments, providing yet more evidence of massive volcanism.<ref>{{cite thesis |last=Viðarsdóttir |first=Halla Margrét |date=2020 |title=Assessing the biodiversity crisis within the Triassic - Jurassic boundary interval using redox sensitive trace metals and stable carbon isotope geochemistry |url=https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9026651&fileOId=9026652 |type=MSc |chapter=6 |publisher=[[Lund University]] |access-date=27 August 2023}}</ref> Some scientists initially rejected the volcanic eruption theory because the [[Newark Supergroup]], a section of rock in eastern North America that records the Triassic–Jurassic boundary, contains no ash-fall horizons and because its oldest [[basalt]] flows were estimated to lie around 10 m above the transition zone,<ref>{{Cite journal |last1=Fowell |first1=Sarah J. |last2=Olsen |first2=Paul E. |date=May 1995 |title=Time calibration of Triassic/Jurassic microfloral turnover, eastern North America—Reply |journal=[[Tectonophysics (journal)|Tectonophysics]] |volume=245 |issue=1–2 |pages=96–99 |bibcode=1995Tectp.245...96F |citeseerx=10.1.1.383.7663 |doi=10.1016/0040-1951(94)00256-9 |issn=0040-1951}}</ref> which they estimated to have occurred 610 kyr after the TJME.<ref>{{Cite journal |last1=Whiteside |first1=Jessica H. |last2=Olsen |first2=Paul E. |last3=Kent |first3=Dennis V. |last4=Fowell |first4=Sarah J. |last5=Et-Touhami |first5=Mohammed |date=9 February 2007 |title=Synchrony between the Central Atlantic magmatic province and the Triassic–Jurassic mass-extinction event? |url=https://www.sciencedirect.com/science/article/pii/S0031018206004585 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=244 |issue=1–4 |pages=345–367 |doi=10.1016/j.palaeo.2006.06.035 |access-date=31 October 2024 |via=Elsevier Science Direct}}</ref> Also among their objections was that the Triassic-Jurassic boundary was poorly defined and the CAMP eruptions poorly constrained temporally.<ref>{{Cite journal |last1=Nomade |first1=S. |last2=Knight |first2=K. B. |last3=Beutel |first3=E. |last4=Renne |first4=P. R. |last5=Verati |first5=C. |last6=Féraud |first6=G. |last7=Marzoli |first7=A. |last8=Youbi |first8=N. |last9=Bertrand |first9=H. |date=9 February 2007 |title=Chronology of the Central Atlantic Magmatic Province: Implications for the Central Atlantic rifting processes and the Triassic–Jurassic biotic crisis |url=https://www.sciencedirect.com/science/article/pii/S0031018206004573 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=244 |issue=1–4 |pages=326–344 |doi=10.1016/j.palaeo.2006.06.034 |access-date=31 October 2024 |via=Elsevier Science Direct}}</ref> However, updated dating protocol and wider sampling has confirmed that the CAMP eruptions started in [[Morocco]] only a few thousand years before the extinction,<ref name="blackburn2013" /> preceding their onset in [[Nova Scotia]] and [[New Jersey]],<ref>{{cite journal |last1=Panfili |first1=Giulia |last2=Cirilli |first2=Simonetta |last3=Dal Corso |first3=Jacopo |last4=Bertrand |first4=Hervé |last5=Medina |first5=Fida |last6=Youbi |first6=Nasrrdine |last7=Marzoli |first7=Andrea |date=January 2019 |title=New biostratigraphic constraints show rapid emplacement of the Central Atlantic Magmatic Province (CAMP) during the end-Triassic mass extinction interval |url=https://www.sciencedirect.com/science/article/abs/pii/S0921818118303199 |journal=[[Global and Planetary Change]] |volume=172 |pages=60–68 |doi=10.1016/j.gloplacha.2018.09.009 |bibcode=2019GPC...172...60P |s2cid=135154965 |access-date=29 July 2023}}</ref><ref>{{cite journal |last1=Yager |first1=Joyce A. |last2=West |first2=A. Joshua |last3=Corsetti |first3=Frank A. |last4=Berelson |first4=William M. |last5=Rollins |first5=Nick E. |last6=Rosas |first6=Silvia |last7=Bottjer |first7=David M. |date=1 September 2017 |title=Duration of and decoupling between carbon isotope excursions during the end-Triassic mass extinction and Central Atlantic Magmatic Province emplacement |journal=[[Earth and Planetary Science Letters]] |volume=473 |pages=227–236 |doi=10.1016/j.epsl.2017.05.031 |bibcode=2017E&PSL.473..227Y |doi-access=free }}</ref><ref>{{cite journal |last1=Cirilli |first1=Simonetta |last2=Marzoli |first2=A. |last3=Tanner |first3=L. |last4=Bertrand |first4=Hervé |last5=Buratti |first5=N. |last6=Jourdan |first6=F. |last7=Bellieni |first7=G. |last8=Kontak |first8=D. |last9=Renne |first9=P. R. |date=15 September 2009 |title=Latest Triassic onset of the Central Atlantic Magmatic Province (CAMP) volcanism in the Fundy Basin (Nova Scotia): New stratigraphic constraints |url=https://www.sciencedirect.com/science/article/abs/pii/S0012821X09004324 |journal=[[Earth and Planetary Science Letters]] |volume=286 |issue=3–4 |pages=514–525 |doi=10.1016/j.epsl.2009.07.021 |bibcode=2009E&PSL.286..514C |hdl=20.500.11937/17126 |access-date=29 July 2023|hdl-access=free }}</ref> and that they continued in several more pulses for the next 600,000 years.<ref name="blackburn2013" /> Volcanic global warming has also been criticised as an explanation because some estimates have found that the amount of carbon dioxide emitted was only around 250 ppm, not enough to generate a mass extinction.<ref name=":6">{{cite journal |first=L. H. |last=Tanner |title=Stability of atmospheric CO<sub>2</sub> levels across the Triassic/Jurassic boundary |journal=[[Nature (journal)|Nature]] |volume=411 |date=7 June 2001 |pages=675–677 |doi=10.1038/35079548 |pmid=11395765 |issue=6838 |author2=J. F. Hubert |author3=B. P. Coffey |display-authors=2 |last4=McInerney |first4=Dennis P. |s2cid=4418003}}</ref> In addition, at some sites, changes in carbon isotope ratios have been attributed to [[diagenesis]] and not any primary environmental changes.<ref>{{cite journal |last1=Morante |first1=R. |last2=Hallam |first2=Anthony |date=1 May 1996 |title=Organic carbon isotopic record across the Triassic-Jurassic boundary in Austria and its bearing on the cause of the mass extinction |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/24/5/391/198779/Organic-carbon-isotopic-record-across-the-Triassic |journal=[[Geology (journal)|Geology]] |volume=24 |issue=5 |pages=391–394 |doi=10.1130/0091-7613(1996)024<0391:OCIRAT>2.3.CO;2 |bibcode=1996Geo....24..391M |access-date=28 May 2023}}</ref> ==== Global warming ==== The flood basalts of the CAMP released gigantic quantities of [[carbon dioxide]],<ref>{{cite journal |last1=Green |first1=Theodore |last2=Renne |first2=Paul R. |last3=Keller |first3=C. Brenhin |date=12 September 2022 |title=Continental flood basalts drive Phanerozoic extinctions |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |volume=119 |issue=38 |pages=e2120441119 |doi=10.1073/pnas.2120441119 |doi-access=free |pmid=36095185 |pmc=9499591 |bibcode=2022PNAS..11920441G }}</ref> a potent greenhouse gas causing intense global warming.<ref name="AnthropogenicScaleDegassing">{{cite journal |last1=Capriolo |first1=Manfredo |last2=Mills |first2=Benjamin J. W. |last3=Newton |first3=Robert J. |last4=Corso |first4=Jacobo Dal |last5=Dunhill |first5=Alexander M. |last6=Wignall |first6=Paul B. |last7=Marzoli |first7=Andrea |date=February 2022 |title=Anthropogenic-scale CO2 degassing from the Central Atlantic Magmatic Province as a driver of the end-Triassic mass extinction |journal=[[Global and Planetary Change]] |volume=209 |page=103731 |doi=10.1016/j.gloplacha.2021.103731 |bibcode=2022GPC...20903731C |s2cid=245530815 |doi-access=free |hdl=10852/91551 |hdl-access=free }}</ref> Before the TJME, carbon dioxide levels were around 1,000 ppm as measured by the stomatal index of ''Lepidopteris ottonis'', but this quantity jumped to 1,300 ppm at the onset of the extinction event.<ref>{{cite journal |last1=Slodownik |first1=Miriam |last2=Vajda |first2=Vivi |last3=Steinthorsdottir |first3=Margret |date=15 February 2021 |title=Fossil seed fern Lepidopteris ottonis from Sweden records increasing CO2 concentration during the end-Triassic extinction event |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=564 |page=110157 |doi=10.1016/j.palaeo.2020.110157 |bibcode=2021PPP...56410157S |s2cid=230527791 |doi-access=free }}</ref> During the TJME, carbon dioxide concentrations increased fourfold.<ref>{{cite journal |last1=Huynh |first1=Tran T. |last2=Poulsen |first2=Christopher J. |date=25 February 2005 |title=Rising atmospheric CO2 as a possible trigger for the end-Triassic mass extinction |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018204006285 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=217 |issue=3–4 |pages=223–242 |doi=10.1016/j.palaeo.2004.12.004 |bibcode=2005PPP...217..223H |access-date=30 May 2023}}</ref> The record of CAMP degassing shows several distinct pulses of carbon dioxide immediately following each major pulse of magmatism, at least two of which amount to a doubling of atmospheric CO<sub>2</sub>.<ref>{{Cite journal |last1=Schaller |first1=Morgan F. |last2=Wright |first2=James D. |last3=Kent |first3=Dennis V. |date=18 March 2011 |title=Atmospheric Pco2 Perturbations Associated with the Central Atlantic Magmatic Province |journal=[[Science (journal)|Science]] |volume=331 |issue=6023 |pages=1404–1409 |doi=10.1126/science.1199011 |issn=0036-8075 |pmid=21330490 |bibcode=2011Sci...331.1404S |s2cid=206530492}}</ref> Carbon dioxide was emitted quickly and in enormous quantities compared to other periods of Earth's history, rate of carbon dioxide emissions was one of the most meteoric rises in carbon dioxide levels in Earth's entire history.<ref name="VolumeRateCO2">{{cite journal |last1=Jiang |first1=Qiang |last2=Jourdan |first2=Fred |last3=Olierook |first3=Hugo K. H. |last4=Merle |first4=Renaud E. |last5=Bourdet |first5=Julien |last6=Fougerouse |first6=Denis |last7=Godel |first7=Belinda |last8=Walker |first8=Alex T. |date=25 July 2022 |title=Volume and rate of volcanic CO2 emissions governed the severity of past environmental crises |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |volume=119 |issue=31 |pages=e2202039119 |doi=10.1073/pnas.2202039119 |doi-access=free |pmid=35878029 |pmc=9351498 |bibcode=2022PNAS..11902039J |s2cid=251067948 }}</ref> It is estimated that a single volcanic pulse from the large igneous province would have emitted an amount of carbon dioxide roughly equivalent to projected anthropogenic carbon dioxide emissions for the 21st century.<ref>{{cite journal |last1=Capriolo |first1=Manfredo |last2=Marzoli |first2=Andrea |last3=Aradi |first3=László E. |last4=Callegaro |first4=Sara |last5=Corso |first5=Jacopo Dal |last6=Newton |first6=Robert J. |last7=Mills |first7=Benjamin J. W. |last8=Wignall |first8=Paul B. |last9=Bartoli |first9=Omar |last10=Baker |first10=Don R. |last11=Youbi |first11=Nasrrddine |last12=Remusat |first12=Laurent |last13=Spiess |first13=Richard |last14=Szabó |first14=Csaba |date=7 April 2020 |title=Deep CO2 in the end-Triassic Central Atlantic Magmatic Province |journal=[[Nature Communications]] |volume=11 |issue=1 |page=1670 |doi=10.1038/s41467-020-15325-6 |pmid=32265448 |pmc=7138847 |bibcode=2020NatCo..11.1670C |s2cid=215404768 }}</ref> In addition, the flood basalts intruded through sediments that were rich in organic matter and combusted it,<ref>{{Cite journal |last=Hua |first=Xia |last2=Yin |first2=Runsheng |last3=Kemp |first3=David B. |last4=Huang |first4=Chunju |last5=Shen |first5=Jun |last6=Jin |first6=Xin |date=15 December 2023 |title=Mercury isotope constraints on the timing and pattern of magmatism during the end-Triassic mass extinction |url=https://www.sciencedirect.com/science/article/abs/pii/S0012821X2300451X |journal=[[Earth and Planetary Science Letters]] |language=en |volume=624 |pages=118438 |doi=10.1016/j.epsl.2023.118438 |access-date=18 February 2025 |via=Elsevier Science Direct}}</ref><ref>{{Cite journal |last1=Lindström |first1=Sofie |last2=Callegaro |first2=Sara |last3=Davies |first3=Joshua |last4=Tegner |first4=Christian |last5=van de Schootbrugge |first5=Bas |last6=Pedersen |first6=Gunver K. |last7=Youbi |first7=Nasrrddine |last8=Sanei |first8=Hamed |last9=Marzoli |first9=Andrea |date=1 January 2021 |title=Tracing volcanic emissions from the Central Atlantic Magmatic Province in the sedimentary record |url=https://www.sciencedirect.com/science/article/pii/S0012825220304906 |journal=[[Earth-Science Reviews]] |volume=212 |pages=103444 |doi=10.1016/j.earscirev.2020.103444 |bibcode=2021ESRv..21203444L |issn=0012-8252 |access-date=12 January 2024 |via=Elsevier Science Direct|hdl=10852/81753 |hdl-access=free }}</ref><ref>{{cite journal |last1=Van de Schootbrugge |first1=Bas |last2=Quan |first2=T. M. |last3=Lindström |first3=S. |last4=Püttmann |first4=W. |last5=Heunisch |first5=C. |last6=Pross |first6=J. |last7=Fiebig |first7=J. |last8=Petschik |first8=R. |last9=Röhling |first9=H.-G. |last10=Richoz |first10=S. |last11=Rosenthal |first11=Y. |last12=Falkowski |first12=P. G. |date=13 July 2009 |title=Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism |url=https://www.nature.com/articles/ngeo577 |journal=[[Nature Geoscience]] |volume=2 |issue=8 |pages=589–594 |doi=10.1038/ngeo577 |bibcode=2009NatGe...2..589V |access-date=17 April 2023}}</ref> as evidenced by low Δ<sup>199</sup>Hg values showing elevated levels of organic matter-derived mercury in the environment.<ref>{{cite journal |last1=Shen |first1=Jun |last2=Yin |first2=Runsheng |last3=Algeo |first3=Thomas J. |last4=Svensen |first4=Henrik Hovland |last5=Schoepfer |first5=Shane D. |date=9 March 2022 |title=Mercury evidence for combustion of organic-rich sediments during the end-Triassic crisis |url=https://www.researchgate.net/publication/359108712 |journal=[[Nature Communications]] |volume=13 |issue=1 |page=1307 |bibcode=2022NatCo..13.1307S |doi=10.1038/s41467-022-28891-8 |pmc=8907283 |pmid=35264554 |access-date=29 March 2023}}</ref> The degassing of [[Volatile (astrogeology)|volatiles]] resulting from volcanic intrusions into organic-rich sediments further enhanced the volcanic warming of the climate.<ref>{{cite journal |last1=Davies |first1=J. H. F. L. |last2=Marzoli |first2=Andrea |last3=Bertrand |first3=H. |last4=Youbi |first4=Nasrrddine |last5=Ernesto |first5=M. |last6=Schaltegger |first6=U. |date=31 May 2017 |title=End-Triassic mass extinction started by intrusive CAMP activity |journal=[[Nature Communications]] |volume=8 |page=15596 |doi=10.1038/ncomms15596 |pmid=28561025 |pmc=5460029 |bibcode=2017NatCo...815596D |s2cid=13323882 }}</ref><ref>{{Cite journal |last1=Capriolo |first1=Manfredo |last2=Marzoli |first2=Andrea |last3=Aradi |first3=László E. |last4=Ackerson |first4=Michael R. |last5=Bartoli |first5=Omar |last6=Callegaro |first6=Sara |last7=Dal Corso |first7=Jacopo |last8=Ernesto |first8=Marcia |last9=Gouvêa Vasconcellos |first9=Eleonora M. |last10=De Min |first10=Angelo |last11=Newton |first11=Robert J. |last12=Szabó |first12=Csaba |date=20 September 2021 |title=Massive methane fluxing from magma–sediment interaction in the end-Triassic Central Atlantic Magmatic Province |journal=[[Nature Communications]] |language=en |volume=12 |issue=1 |pages=5534 |doi=10.1038/s41467-021-25510-w |pmid=34545073 |pmc=8452664 |bibcode=2021NatCo..12.5534C |issn=2041-1723 |hdl=11368/2996003 |hdl-access=free }}</ref> Thermogenic carbon release through such [[contact metamorphism]] of carbon-rich deposits has been found to be a sensible hypothesis providing a coherent explanation for the magnitude of the negative carbon isotope excursions at the terminus of the Triassic.<ref>{{cite journal |last1=Heimdal |first1=Thea H. |last2=Jones |first2=Morgan T. |last3=Svensen |first3=Henrik H. |date=18 May 2022 |title=Thermogenic carbon release from the Central Atlantic magmatic province caused major end-Triassic carbon cycle perturbations |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |volume=117 |issue=22 |pages=11968–11974 |doi=10.1073/pnas.2000095117 |doi-access=free |pmid=32424084 |pmc=7275695 }}</ref> Global temperatures rose sharply by 3 to 4 °C.<ref name="McElwainBeerlingWoodward1999">{{cite journal |last1=McElwain |first1=J. C. |last2=Beerling |first2=D. J. |last3=Woodward |first3=F. I. |date=27 August 1999 |title=Fossil Plants and Global Warming at the Triassic-Jurassic Boundary |url=https://www.science.org/doi/10.1126/science.285.5432.1386 |journal=[[Science (journal)|Science]] |volume=285 |issue=5432 |pages=1386–1390 |doi=10.1126/science.285.5432.1386 |pmid=10464094 |access-date=15 November 2022}}</ref> In some regions, the temperature rise was as great as 10 °C.<ref>{{Cite journal |last1=Korte |first1=Christoph |last2=Hesselbo |first2=Stephen P. |last3=Jenkyns |first3=Hugh C. |last4=Rickaby |first4=Rosalind E. M. |last5=Spötl |first5=Christoph |date=May 2009 |title=Palaeoenvironmental significance of carbon- and oxygen-isotope stratigraphy of marine Triassic–Jurassic boundary sections in SW Britain |url=https://www.researchgate.net/publication/249547523 |journal=[[Journal of the Geological Society]] |language=en |volume=166 |issue=3 |pages=431–445 |doi=10.1144/0016-76492007-177 |bibcode=2009JGSoc.166..431K |s2cid=128814622 |issn=0016-7649 |access-date=31 October 2023}}</ref> Kaolinite-dominated clay mineral spectra reflect the extremely hot and humid greenhouse conditions engendered by the CAMP.<ref>{{Cite journal |last1=Pálfy |first1=József |last2=Zajzon |first2=Norbert |date=15 June 2012 |title=Environmental changes across the Triassic–Jurassic boundary and coeval volcanism inferred from elemental geochemistry and mineralogy in the Kendlbachgraben section (Northern Calcareous Alps, Austria) |url=https://linkinghub.elsevier.com/retrieve/pii/S0012821X12002075 |journal=[[Earth and Planetary Science Letters]] |language=en |volume=335-336 |pages=121–134 |doi=10.1016/j.epsl.2012.01.039 |access-date=19 June 2024 |via=Elsevier Science Direct}}</ref> Soil erosion occurred as the hydrological cycle was accelerated by the extreme global heat.<ref>{{Cite journal |last1=van de Schootbrugge |first1=Bas |last2=Koutsodendris |first2=Andreas |last3=Taylor |first3=Wilson |last4=Weston |first4=Fabian |last5=Wellman |first5=Charles |last6=Strother |first6=Paul K. |date=March 2024 |title=Recognition of an extended record of euglenoid cysts: Implications for the end-Triassic mass extinction |journal=[[Review of Palaeobotany and Palynology]] |language=en |volume=322 |pages=105043 |doi=10.1016/j.revpalbo.2023.105043 |doi-access=free }}</ref> The catastrophic dissociation of [[Clathrate hydrate|gas hydrate]]s as a positive feedback resulting from warming, which has been suggested as one possible cause of the PTME, the largest [[mass extinction]] of all time,<ref name="BentonTwitchett2003">{{cite journal |last1 = Benton |first1= Michael James | last2=Twitchett |first2=Richard J. | year = 2003 |title=How to kill (almost) all life: The end-Permian extinction event | journal = [[Trends in Ecology & Evolution]] |volume = 18 | issue = 7 | pages = 358–365 |doi = 10.1016/S0169-5347(03)00093-4 |s2cid= 42114053 }}</ref> may have exacerbated greenhouse conditions,<ref>{{cite journal |last1=Ruhl |first1=Micha |last2=Bonis |first2=Nina R. |last3=Reichart |first3=Gert-Jan |last4=Sinninghe Damsté |first4=Jaap S. |last5=Kürschner |first5=Wolfram M. |date=22 July 2011 |title=Atmospheric Carbon Injection Linked to End-Triassic Mass Extinction |url=https://www.science.org/doi/abs/10.1126/science.1204255 |journal=[[Science (journal)|Science]] |volume=333 |issue=6041 |pages=430–434 |doi=10.1126/science.1204255 |pmid=21778394 |bibcode=2011Sci...333..430R |s2cid=13537776 |access-date=9 December 2022}}</ref><ref>{{cite journal |last1=Galli |first1=Maria Teresa |last2=Jadoul |first2=Flavio |last3=Bernasconi |first3=Stefano M. |last4=Weissert |first4=Helmut |date=1 February 2005 |title=Anomalies in global carbon cycling and extinction at the Triassic/Jurassic boundary: evidence from a marine C-isotope record |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018204005644 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=216 |issue=3–4 |pages=203–214 |doi=10.1016/j.palaeo.2004.11.009 |bibcode=2005PPP...216..203G |access-date=9 December 2022}}</ref> although others suggest that methane hydrate release was temporally mismatched with the TJME and thus not a cause of it.<ref>{{cite journal |last1=Van de Schootbrugge |first1=Bas |last2=Bachan |first2=Aviv |last3=Suan |first3=Guillaume |last4=Richoz |first4=Sylvain |last5=Payne |first5=Jonathan L. |date=19 March 2013 |title=Microbes, mud and methane: cause and consequence of recurrent Early Jurassic anoxia following the end-Triassic mass extinction |journal=[[Palaeontology (journal)|Palaeontology]] |volume=56 |issue=4 |pages=685–709 |doi=10.1111/pala.12034 |bibcode=2013Palgy..56..685V |s2cid=76651746 |doi-access=free }}</ref><ref>{{cite journal |last1=Lindström |first1=Sofie |last2=Van de Schootbrugge |first2=Bas |last3=Dybkjær |first3=Karen |last4=Pedersen |first4=Gunver Krarup |last5=Fiebig |first5=Jens |last6=Nielsen |first6=Lars Henrik |last7=Richoz |first7=Sylvain |date=1 June 2012 |title=No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass extinction |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/40/6/531/130915/No-causal-link-between-terrestrial-ecosystem?redirectedFrom=fulltext |journal=[[Geology (journal)|Geology]] |volume=40 |issue=6 |pages=531–534 |doi=10.1130/G32928.1 |bibcode=2012Geo....40..531L |access-date=27 August 2023}}</ref> ==== Global cooling ==== Besides the carbon dioxide-driven long-term global warming, CAMP volcanism had shorter term cooling effects resulting from the emission of [[sulphur dioxide]] aerosols.<ref>{{cite journal |last1=Landwehrs |first1=Jan Philip |last2=Feulner |first2=Georg |last3=Hofmann |first3=Matthias |last4=Petri |first4=Stefan |date=1 May 2020 |title=Climatic fluctuations modeled for carbon and sulfur emissions from end-Triassic volcanism |url=https://www.sciencedirect.com/science/article/abs/pii/S0012821X20301175 |journal=[[Earth and Planetary Science Letters]] |volume=537 |pages=1–11 |doi=10.1016/j.epsl.2020.116174 |bibcode=2020E&PSL.53716174L |s2cid=212982254 |access-date=29 July 2023}}</ref><ref>{{cite journal |last1=Kaiho |first1=Kunio |last2=Tanaka |first2=Daisuke |last3=Richoz |first3=Sylvain |last4=Jones |first4=David S. |last5=Saito |first5=Ryosuke |last6=Kameyama |first6=Daichi |last7=Ikeda |first7=Masayuki |last8=Takahashi |first8=Satoshi |last9=Aftabuzzaman |first9=Md. |last10=Fujibayashi |first10=Megumu |date=1 February 2022 |title=Volcanic temperature changes modulated volatile release and climate fluctuations at the end-Triassic mass extinction |journal=[[Earth and Planetary Science Letters]] |volume=579 |page=117364 |doi=10.1016/j.epsl.2021.117364 |bibcode=2022E&PSL.57917364K |s2cid=245922701 |doi-access=free }}</ref><ref name="blackburn2013" /> The extremely voluminous emission of this gas caused sharp drops in Earth's albedo and induced severe volcanic winters.<ref>{{Cite journal |last=Kent |first=Dennis V. |last2=Olsen |first2=Paul E. |last3=Wang |first3=Huapei |last4=Schaller |first4=Morgan F. |last5=Et-Touhami |first5=Mohammed |date=12 November 2024 |title=Correlation of sub-centennial-scale pulses of initial Central Atlantic Magmatic Province lavas and the end-Triassic extinctions |url=https://pnas.org/doi/10.1073/pnas.2415486121 |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |language=en |volume=121 |issue=46 |doi=10.1073/pnas.2415486121 |issn=0027-8424 |pmc=11573653 |pmid=39467154 |access-date=18 February 2025}}</ref> High latitudes had colder climates with evidence of mild glaciation during the extinction interval. Cold periods induced by volcanic ejecta clouding the atmosphere might have favoured [[endothermic]] animals, with dinosaurs, pterosaurs, and mammals being more capable at enduring these conditions than large pseudosuchians due to insulation.<ref>{{cite journal |last1=Olsen |first1=Paul |last2=Sha |first2=Jingeng |last3=Fang |first3=Yanan |last4=Chang |first4=Clara |last5=Whiteside |first5=Jessica H. |last6=Kinney |first6=Sean |last7=Sues |first7=Hans-Dieter |last8=Kent |first8=Dennis |last9=Schaller |first9=Morgan |last10=Vajda |first10=Vivi |title=Arctic ice and the ecological rise of the dinosaurs |journal=[[Science Advances]] |date=July 2022 |volume=8 |issue=26 |pages=eabo6342 |doi=10.1126/sciadv.abo6342|pmid=35776799 |bibcode=2022SciA....8O6342O |s2cid=250218588 |doi-access=free |pmc=10883366 }}</ref> ==== Metal poisoning ==== CAMP volcanism released enormous amounts of toxic [[mercury (element)|mercury]].<ref>{{Cite journal |last1=Thibodeau |first1=Alyson M. |last2=Ritterbush |first2=Kathleen |last3=Yager |first3=Joyce A. |last4=West |first4=A. Joshua |last5=Ibarra |first5=Yadira |last6=Bottjer |first6=David J. |last7=Berelson |first7=William M. |last8=Bergquist |first8=Bridget A. |last9=Corsetti |first9=Frank A. |date=6 April 2016 |title=Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction |journal=[[Nature Communications]] |language=en |volume=7 |issue=1 |page=11147 |doi=10.1038/ncomms11147 |issn=2041-1723 |pmc=4823824 |pmid=27048776 }}</ref><ref>{{Cite journal |last1=Yager |first1=Joyce A. |last2=West |first2=A. Joshua |last3=Thibodeau |first3=Alyson M. |last4=Corsetti |first4=Frank A. |last5=Rigo |first5=Manuel |last6=Berelson |first6=William M. |last7=Bottjer |first7=David J. |last8=Greene |first8=Sarah E. |last9=Ibarra |first9=Yadira |last10=Jadoul |first10=Flavio |last11=Ritterbush |first11=Kathleen A. |last12=Rollins |first12=Nick |last13=Rosas |first13=Silvia |last14=Di Stefano |first14=Pietro |last15=Sulca |first15=Debbie |last16=Todaro |first16=Simona |last17=Wynn |first17=Peter |last18=Zimmermann |first18=Laura |last19=Bergquist |first19=Bridget A. |date=December 2021 |title=Mercury contents and isotope ratios from diverse depositional environments across the Triassic–Jurassic Boundary: Towards a more robust mercury proxy for large igneous province magmatism |url=https://linkinghub.elsevier.com/retrieve/pii/S0012825221002762 |journal=[[Earth-Science Reviews]] |language=en |volume=223 |pages=103775 |doi=10.1016/j.earscirev.2021.103775 |hdl=10447/518179 |access-date=19 June 2024 |via=Elsevier Science Direct|hdl-access=free }}</ref> The appearance of high rates of mutaganesis of varying severity in fossil spores during the TJME coincides with mercury anomalies and is thus believed by researchers to have been caused by [[mercury poisoning]].<ref>{{cite journal |last1=Lindström |first1=Sofie |last2=Sanei |first2=Haver |last3=Van de Schootbrugge |first3=Bas |last4=Pedersen |first4=Gunver Krarup |last5=Lesher |first5=Charles E. |last6=Tegner |first6=Christian |last7=Heunisch |first7=Carmen |last8=Dybkjaer |first8=Karen |last9=Outridge |first9=Peter M. |date=23 October 2019 |title=Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction |journal=[[Science Advances]] |volume=5 |issue=10 |pages=eaaw4018 |doi=10.1126/sciadv.aaw4018 |pmid=31681836 |pmc=6810405 |bibcode=2019SciA....5.4018L }}</ref> δ<sup>202</sup>Hg and Δ<sup>199</sup>Hg evidence suggests that volcanism caused the mercury loading directly at the Triassic-Jurassic boundary, but that there were later bouts of elevated mercury in the environment during the Early Jurassic caused by eccentricity-forced enhancement of hydrological cycling and erosion that resulted in remobilisation of volcanically injected mercury that had been deposited in wetlands.<ref>{{Cite journal |last1=Bos |first1=Remco |last2=Zheng |first2=Wang |last3=Lindström |first3=Sofie |last4=Sanei |first4=Hamed |last5=Waajen |first5=Irene |last6=Fendley |first6=Isabel M. |last7=Mather |first7=Tamsin A. |last8=Wang |first8=Yang |last9=Rohovec |first9=Jan |last10=Navrátil |first10=Tomáš |last11=Sluijs |first11=Appy |last12=van de Schootbrugge |first12=Bas |date=27 April 2024 |title=Climate-forced Hg-remobilization associated with fern mutagenesis in the aftermath of the end-Triassic extinction |journal=[[Nature Communications]] |language=en |volume=15 |issue=1 |pages=3596 |doi=10.1038/s41467-024-47922-0 |pmid=38678037 |pmc=11519498 |issn=2041-1723 }}</ref> ==== Wildfires ==== The intense, rapid warming is believed to have resulted in increased storminess and lightning activity as a consequence of the more humid climate. The uptick in lightning activity is in turn implicated as a cause of an increase in wildfire activity.<ref>{{cite journal |last1=Petersen |first1=Henrik I. |last2=Lindström |first2=Sofie |date=15 October 2012 |title=Synchronous Wildfire Activity Rise and Mire Deforestation at the Triassic–Jurassic Boundary |journal=[[PLOS ONE]] |volume=7 |issue=10 |pages=e47236 |doi=10.1371/journal.pone.0047236 |pmid=23077574 |pmc=3471965 |bibcode=2012PLoSO...747236P |doi-access=free }}</ref> The combined presence of charcoal fragments and heightened levels of pyrolytic polycyclic aromatic hydrocarbons in Polish sedimentary facies straddling the Triassic-Jurassic boundary indicates wildfires were extremely commonplace during the earliest Jurassic, immediately after the Triassic-Jurassic transition.<ref>{{cite journal |last1=Marynowski |first1=Leszek |last2=Simoneit |first2=Bernd R. T. |title=Widespread Upper Triassic to Lower Jurassic Wildfire Records from Poland: Evidence from Charcoal and Pyrolytic Polycyclic Aromatic Hydrocarbons |date=1 December 2009 |url=https://bioone.org/journals/palaios/volume-24/issue-12/palo.2009.p09-044r/WIDESPREAD-UPPER-TRIASSIC-TO-LOWER-JURASSIC-WILDFIRE-RECORDS-FROM-POLAND/10.2110/palo.2009.p09-044r.short |journal=[[PALAIOS]] |volume=24 |issue=12 |pages=785–798 |doi=10.2110/palo.2009.p09-044r |bibcode=2009Palai..24..785M |s2cid=131470890 |access-date=29 March 2023}}</ref> Elevated wildfire activity is also known from the Junggar Basin.<ref>{{Cite journal |last1=Fang |first1=Yanan |last2=Fang |first2=Linhao |last3=Deng |first3=Shenghui |last4=Lu |first4=Yuanzheng |last5=Wang |first5=Bo |last6=Zhao |first6=Xiangdong |last7=Wang |first7=Yizhe |last8=Zhang |first8=Haichun |last9=Zhang |first9=Xinzhi |last10=Sha |first10=Jingeng |date=1 September 2021 |title=Carbon isotope stratigraphy across the Triassic-Jurassic boundary in the high-latitude terrestrial Junggar Basin, NW China |url=https://www.sciencedirect.com/science/article/pii/S0031018221003448 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=577 |pages=110559 |doi=10.1016/j.palaeo.2021.110559 |bibcode=2021PPP...57710559F |issn=0031-0182 |access-date=12 January 2024 |via=Elsevier Science Direct}}</ref> In the Jiyuan Basin, two distinct pulses of drastically elevated wildfire activity are known: the first mainly affected canopies and occurred amidst relatively humid conditions while the second predominantly affected ground cover and was associated with aridity.<ref>{{Cite journal |last1=Zhang |first1=Peixin |last2=Yang |first2=Minfang |last3=Lu |first3=Jing |last4=Jiang |first4=Zhongfeng |last5=Zhou |first5=Kai |last6=Xu |first6=Xiaotao |last7=Wang |first7=Lei |last8=Wu |first8=Li |last9=Zhang |first9=Yuchan |last10=Chen |first10=Huijuan |last11=Zhu |first11=Xuran |last12=Guo |first12=Yanghang |last13=Ye |first13=Huajun |last14=Shao |first14=Longyi |last15=Hilton |first15=Jason |date=26 January 2024 |title=Different wildfire types promoted two-step terrestrial plant community change across the Triassic-Jurassic transition |journal=[[Frontiers in Ecology and Evolution]] |volume=12 |doi=10.3389/fevo.2024.1329533 |doi-access=free |issn=2296-701X }}</ref> At the Winterswijk quarry in the Netherlands, a surge in wildfire activity has been suggested to correspond to and have caused the sudden decline in coniferous vegetation.<ref>{{Cite journal |last=Bos |first=Remco |last2=van Zonneveld |first2=Roel-Jan |last3=Reumer |first3=Jelle W.F. |last4=Vis |first4=Geert-Jan |last5=Janssen |first5=Nico |last6=Everwijn |first6=Teun |last7=Sluijs |first7=Appy |last8=van de Schootbrugge |first8=Bas |date=22 November 2024 |title=A high-resolution palynological and geochemical study of the end-Triassic mass-extinction based on a new cored succession at Winterswijk (the Netherlands) |url=https://www.cambridge.org/core/journals/geological-magazine/article/highresolution-palynological-and-geochemical-study-of-the-endtriassic-massextinction-based-on-a-new-cored-succession-at-winterswijk-the-netherlands/FBE4D0B40A5F3B6DCB7EE2937B0DA9FE |journal=[[Geological Magazine]] |language=en |volume=161 |doi=10.1017/S0016756824000323 |issn=0016-7568 |access-date=18 February 2025 |via=Cambridge Core}}</ref> Frequent wildfires, combined with increased seismic activity from CAMP emplacement, led to apocalyptic [[soil degradation]].<ref>{{cite journal |last1=Van de Schootbrugge |first1=Bas |last2=Van der Weijst |first2=C. M. H. |last3=Hollaar |first3=T. P. |last4=Vecoli |first4=M. |last5=Strother |first5=P. K. |last6=Kuhlmann |first6=N. |last7=Thein |first7=J. |last8=Visscher |first8=Henk |last9=Van Konijnenburg-van Cittert |first9=H. |last10=Schobben |first10=M. A. N. |last11=Sluijs |first11=Appy |last12=Lindström |first12=Sofie |date=November 2020 |title=Catastrophic soil loss associated with end-Triassic deforestation |journal=[[Earth-Science Reviews]] |volume=210 |page=103332 |doi=10.1016/j.earscirev.2020.103332 |bibcode=2020ESRv..21003332V |s2cid=225203547 |doi-access=free }}</ref> ==== Anoxia and euxinia ==== Anoxia was another mechanism of extinction; the end-Triassic extinction was coeval with an uptick in black shale deposition and a pronounced negative δ<sup>238</sup>U excursion, indicating a major decrease in marine oxygen availability.<ref name="JostEtAl2017" /> Additional evidence for anoxia during the TJME comes from pyrite framboids, which grow in anoxic conditions.<ref>{{Cite journal |last=Hu |first=Fangzhi |last2=Fu |first2=Xiugen |last3=Wang |first3=Jian |last4=Wei |first4=Hengye |last5=Nie |first5=Ying |last6=Zhang |first6=Jian |last7=Tian |first7=Kangzhi |date=2 October 2023 |title=Biological extinction and photic-zone anoxia across the Triassic–Jurassic transition: insights from the Qiangtang Basin, eastern Tethys |url=https://www.lyellcollection.org/doi/10.1144/jgs2022-108 |journal=[[Journal of the Geological Society]] |language=en |volume=180 |issue=5 |doi=10.1144/jgs2022-108 |issn=0016-7649 |access-date=19 February 2025 |via=Lyell Collection Geological Society Publications}}</ref> Evidence of anoxia has been discovered at the Triassic-Jurassic boundary across the world's oceans; the western Tethys, eastern Tethys, and Panthalassa were all affected by a precipitous drop in seawater oxygen,<ref>{{cite journal |last1=Tang |first1=Wei |last2=Wang |first2=Jian |last3=Wei |first3=Hengye |last4=Fu |first4=Xiugen |last5=Ke |first5=Puyang |date=1 August 2023 |title=Sulfur isotopic evidence for global marine anoxia and low seawater sulfate concentration during the Late Triassic |url=https://www.sciencedirect.com/science/article/abs/pii/S1367912023001207 |journal=[[Journal of Asian Earth Sciences]] |volume=251 |page=105659 |doi=10.1016/j.jseaes.2023.105659 |bibcode=2023JAESc.25105659T |s2cid=258091074 |access-date=28 May 2023}}</ref> although at a few sites, the TJME was associated with fully oxygenated waters.<ref>{{cite journal |last1=Wignall |first1=Paul B. |last2=Bond |first2=David P. G. |last3=Kuwahara |first3=Kiyoko |last4=Kakuwa |first4=Yoshitaka |last5=Newton |first5=Robert J. |last6=Poulton |first6=Simon W. |date=March 2010 |title=An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions |url=https://www.sciencedirect.com/science/article/abs/pii/S0921818110000287 |journal=[[Global and Planetary Change]] |volume=71 |issue=1–2 |pages=109–123 |doi=10.1016/j.gloplacha.2010.01.022 |bibcode=2010GPC....71..109W |access-date=7 June 2023}}</ref> Positive [[δ15N|δ<sup>15</sup>N]] excursions have also been interpreted as evidence of anoxia concomitant with increased denitrification in marine sediments in the TJME's aftermath.<ref>{{cite journal |last1=Quan |first1=Tracy M. |last2=Van de Schootbrugge |first2=Bas |last3=Field |first3=M. Paul |last4=Rosenthal |first4=Yair |last5=Falkowski |first5=Paul G. |date=10 May 2008 |title=Nitrogen isotope and trace metal analyses from the Mingolsheim core (Germany): Evidence for redox variations across the Triassic-Jurassic boundary |journal=Global Biogeochemical Cycles |volume=22 |issue=2 |pages=1–14 |bibcode=2008GBioC..22.2014Q |doi=10.1029/2007GB002981 |s2cid=56002825 |doi-access=free }}</ref> In northeastern Panthalassa, episodes of anoxia were already occurring during the Rhaetian before the TJME, making its marine ecosystems unstable even before the main crisis began.<ref>{{cite journal |last1=Larina |first1=Ekaterina |last2=Bottjer |first2=David P. |last3=Corsetti |first3=Frank A. |last4=Zonneveld |first4=John-Paul |last5=Celestian |first5=Aaron J. |last6=Bailey |first6=Jake V. |date=11 December 2019 |title=Uppermost Triassic phosphorites from Williston Lake, Canada: link to fluctuating euxinic-anoxic conditions in northeastern Panthalassa before the end-Triassic mass extinction |journal=[[Scientific Reports]] |volume=9 |issue=1 |page=18790 |doi=10.1038/s41598-019-55162-2 |pmid=31827166 |pmc=6906467 |bibcode=2019NatSR...918790L }}</ref><ref>{{Cite journal |last1=Clement |first1=Annaka M. |last2=Tackett |first2=Lydia S. |last3=Marolt |first3=Samuel |date=15 March 2024 |title=Biosediment assemblages reveal disrupted silica cycling and redox conditions throughout the Rhaetian Stage: Evidence for a precursor event to the end-Triassic mass extinction |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=638 |pages=112034 |doi=10.1016/j.palaeo.2024.112034 |doi-access=free }}</ref> This early phase of [[environmental degradation]] in eastern Panthalassa may have been caused by an early phase of CAMP activity.<ref>{{cite journal |last1=Larina |first1=Ekaterina |last2=Bottjer |first2=David P. |last3=Corsetti |first3=Frank A. |last4=Thibodeau |first4=Alyson M. |last5=Berelson |first5=William M. |last6=West |first6=A. Joshua |last7=Yager |first7=Joyce A. |date=15 December 2021 |title=Ecosystem change and carbon cycle perturbation preceded the end-Triassic mass extinction |journal=[[Earth and Planetary Science Letters]] |volume=576 |page=117180 |doi=10.1016/j.epsl.2021.117180 |bibcode=2021E&PSL.57617180L |s2cid=244179806 |doi-access=free }}</ref> Anoxic, reducing conditions were likewise present in western Panthalassa off the coast of what is now Japan for about a million years prior to the TJME.<ref>{{Cite journal |last1=Schoepfer |first1=Shane D. |last2=Shen |first2=Jun |last3=Sano |first3=Hiroyoshi |last4=Algeo |first4=Thomas J. |date=January 2022 |title=Onset of environmental disturbances in the Panthalassic Ocean over one million years prior to the Triassic-Jurassic boundary mass extinction |url=https://linkinghub.elsevier.com/retrieve/pii/S0012825221003718 |journal=[[Earth-Science Reviews]] |language=en |volume=224 |pages=103870 |doi=10.1016/j.earscirev.2021.103870 |bibcode=2022ESRv..22403870S |s2cid=244473296 |access-date=22 November 2023}}</ref> During the TJME, the rapid warming led to the stagnation of ocean circulation in many ocean regions, enabling the development of catastrophic anoxia; in what is now northwestern Europe, shallow seas became salinity stratified, enabling easy development of anoxia.<ref name="OrganicWalledDisasterSpecies">{{cite journal |last1=Van de Schootbrugge |first1=Bas |last2=Tremolada |first2=F. |last3=Rosenthal |first3=Y. |last4=Bailey |first4=T. R. |last5=Feist-Burkhardt |first5=S. |last6=Brinkhuis |first6=Henk |last7=Pross |first7=J. |last8=Kent |first8=D. V. |last9=Falkowski |first9=P. G. |date=9 February 2007 |title=End-Triassic calcification crisis and blooms of organic-walled 'disaster species' |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018206004457 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=244 |issue=1–4 |pages=126–141 |bibcode=2007PPP...244..126V |doi=10.1016/j.palaeo.2006.06.026 |access-date=30 May 2023}}</ref> Another factor contributing to anoxia was the increase in continental weathering driven by intense warming that delivered vast quantities of nutrients to the ocean surface and engendered eutrophication; this uptick in weathering is evidenced by positive δ<sup>56</sup>Fe excursions.<ref>{{Cite journal |last=Wan |first=Ruoqi |last2=Yuan |first2=Chengshuai |last3=Liu |first3=Sheng-Ao |last4=Fang |first4=Linhao |last5=Shen |first5=Jun |last6=Wang |first6=Xiaomei |date=17 October 2024 |title=Intensified continental weathering and reductive surface runoff during the Triassic–Jurassic transition |url=https://pubs.geoscienceworld.org/geology/article/53/1/13/649334/Intensified-continental-weathering-and-reductive |journal=Geology |language=en |volume=53 |issue=1 |pages=13–17 |doi=10.1130/G52551.1 |issn=0091-7613 |access-date=18 February 2025 |via=GeoScienceWorld}}</ref> A combination of negative δ<sup>66</sup>Zn excursions, positive δ<sup>26</sup>Mg excursions, and a lack of significant change in δ<sup>65</sup>Cu provides further evidence of increased chemical weathering resulting from increased temperature and humidity on land at high latitudes.<ref>{{Cite journal |last=Xing |first=Kai-Chen |last2=Wang |first2=Feng |last3=Teng |first3=Fang-Zhen |last4=Xu |first4=Wen-Liang |last5=Li |first5=Ming |last6=Sun |first6=Yue-Wu |last7=Yang |first7=De-Bin |date=5 November 2022 |title=High-latitude climatic response across the Triassic-Jurassic boundary recorded by Mg-Cu-Zn isotopes |url=https://www.sciencedirect.com/science/article/pii/S0009254122003795 |journal=[[Chemical Geology]] |language=en |volume=610 |pages=121085 |doi=10.1016/j.chemgeo.2022.121085 |access-date=19 February 2025 |via=Elsevier Science Direct}}</ref> Increased influx of terrestrial organic matter, in conjunction with reduced salinity, has been directly shown to have enkindled anoxia in the Eiberg Basin.<ref>{{Cite journal |last1=Bonis |first1=N.R. |last2=Ruhl |first2=M. |last3=Kürschner |first3=W.M. |date=15 April 2010 |title=Climate change driven black shale deposition during the end-Triassic in the western Tethys |url=https://linkinghub.elsevier.com/retrieve/pii/S0031018209002326 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=290 |issue=1–4 |pages=151–159 |doi=10.1016/j.palaeo.2009.06.016 |bibcode=2010PPP...290..151B |access-date=22 November 2023}}</ref> Persistent low δ<sup>238</sup>U ratios indicate prolonged global oxygen depletion continued into the Hettangian,<ref>{{Cite journal |last=Somlyay |first=Anna |last2=Palcsu |first2=László |last3=Kiss |first3=Gabriella Ilona |last4=Clarkson |first4=Matthew O. |last5=Kovács |first5=Emma Blanka |last6=Vallner |first6=Zsolt |last7=Zajzon |first7=Norbert |last8=Pálfy |first8=József |date=15 July 2023 |title=Uranium isotope evidence for extensive seafloor anoxia after the end-Triassic mass extinction |url=https://www.sciencedirect.com/science/article/pii/S0012821X23002030 |journal=[[Earth and Planetary Science Letters]] |language=en |volume=614 |pages=118190 |doi=10.1016/j.epsl.2023.118190 |access-date=18 February 2025 |via=Elsevier Science Direct|hdl=10831/107736 |hdl-access=free }}</ref> with <sup>87</sup>Sr/<sup>86</sup>Sr values showing that high influxes of terrestrial nutrients likely continued to eutrophicate the oceans well after the Triassic-Jurassic boundary.<ref>{{Cite journal |last=Heszler |first=Bernát |last2=Katchinoff |first2=Joachim |last3=Palcsu |first3=László |last4=Horváth |first4=Anikó |last5=Vallner |first5=Zsolt |last6=Kovács |first6=Emma Blanka |last7=Planavsky |first7=Noah J. |last8=Pálfy |first8=József |date=19 March 2024 |title=Marine Strontium Isotope Evolution at the Triassic‐Jurassic Transition Links Transient Changes in Continental Weathering to Volcanism of the Central Atlantic Magmatic Province |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GC011464 |journal=[[Geochemistry, Geophysics, Geosystems]] |language=en |volume=25 |issue=3 |doi=10.1029/2024GC011464 |issn=1525-2027 |access-date=18 February 2025 |via=Wiley Online Library|doi-access=free }}</ref> The persistence of anoxia into the Hettangian age may have helped delay the recovery of marine life in the extinction's aftermath.<ref name="JostEtAl2017">{{cite journal |last1=Jost |first1=Adam B. |last2=Bacham |first2=Aviv |last3=Van de Schootbrugge |first3=Bas |last4=Lau |first4=Kimberly V. |last5=Weaver |first5=Karrie L. |last6=Maher |first6=Kate |last7=Payne |first7=Jonathan L. |date=26 July 2017 |title=Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2017GC006941 |journal=[[Geochemistry, Geophysics, Geosystems]] |volume=18 |issue=8 |pages=3093–3108 |doi=10.1002/2017GC006941 |bibcode=2017GGG....18.3093J |hdl=1874/362214 |s2cid=133679444 |access-date=11 March 2023|hdl-access=free }}</ref><ref>{{Cite journal |last1=Luo |first1=Genming |last2=Richoz |first2=Sylvain |last3=van de Schootbrugge |first3=Bas |last4=Algeo |first4=Thomas J. |last5=Xie |first5=Shucheng |last6=Ono |first6=Shuhei |last7=Summons |first7=Roger E. |date=15 June 2018 |title=Multiple sulfur-isotopic evidence for a shallowly stratified ocean following the Triassic-Jurassic boundary mass extinction |url=https://linkinghub.elsevier.com/retrieve/pii/S0016703718302126 |journal=[[Geochimica et Cosmochimica Acta]] |language=en |volume=231 |pages=73–87 |doi=10.1016/j.gca.2018.04.015 |bibcode=2018GeCoA.231...73L |hdl=1874/366656 |s2cid=134614697 |access-date=22 November 2023|hdl-access=free }}</ref><ref>{{Cite journal |last=Prow-Fleischer |first=Ashley N. |last2=Lu |first2=Zunli |last3=Blättler |first3=Clara L. |last4=He |first4=Tianchen |last5=Singh |first5=Pulkit |last6=Kemeny |first6=Preston Cosslett |last7=Todes |first7=Jordan P. |last8=Pohl |first8=Alexandre |last9=Bhattacharya |first9=Tripti |last10=van de Schootbrugge |first10=Bas |last11=Wignall |first11=Paul B. |last12=Todaro |first12=Simona |last13=Payne |first13=Jonathan L. |date=5 February 2025 |title=Calcium isotopes support spatial redox gradients on the Tethys European margin across the Triassic-Jurassic boundary |url=https://www.sciencedirect.com/science/article/abs/pii/S0009254124006107 |journal=[[Chemical Geology]] |language=en |volume=673 |pages=122530 |doi=10.1016/j.chemgeo.2024.122530 |access-date=18 February 2025 |via=Elsevier Science Direct}}</ref> [[Euxinia]], a form of anoxia defined by not just the absence of dissolved oxygen but high concentrations of [[hydrogen sulphide]], also developed in the oceans, as indicated by findings of increased isorenieratane. The increase in concentration of this substance reveals that populations of [[green sulfur bacteria|green sulphur bacteria]], which photosynthesise using [[hydrogen sulphide]] instead of water, grew significantly across the Triassic-Jurassic boundary.<ref name="RichozEtAl2012">{{cite journal |last1=Richoz |first1=Sylvain |last2=Van de Schootbrugge |first2=Bas |last3=Pross |first3=Jörg |last4=Püttmann |first4=Wilhelm |last5=Quan |first5=Tracy M. |last6=Lindström |first6=Sofie |last7=Heunisch |first7=Carmen |last8=Fiebig |first8=Jens |last9=Maquil |first9=Robert |last10=Schouten |first10=Stefan |last11=Hauzenberger |first11=Christoph A. |last12=Wignall |first12=Paul B. |date=12 August 2012 |title=Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction |url=https://www.nature.com/articles/ngeo1539 |journal=[[Nature Geoscience]] |volume=5 |issue=1 |pages=662–667 |bibcode=2012NatGe...5..662R |doi=10.1038/ngeo1539 |s2cid=128759882 |access-date=22 May 2023}}</ref><ref>{{cite journal |last1=Jaraula |first1=Caroline M. B. |last2=Grice |first2=Kliti |last3=Twitchett |first3=Richard J. |last4=Böttcher |first4=Michael E. |last5=LeMetayer |first5=Pierre |last6=Dastidar |first6=Apratim G. |last7=Opazo |first7=L. Felipe |date=1 September 2013 |title=Elevated pCO2 leading to Late Triassic extinction, persistent photic zone euxinia, and rising sea levels |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/41/9/955/131334/Elevated-pCO2-leading-to-Late-Triassic-extinction |journal=[[Geology (journal)|Geology]] |volume=41 |issue=9 |pages=955–958 |bibcode=2013Geo....41..955J |doi=10.1130/G34183.1 |access-date=30 May 2023}}</ref> A meteoric shift towards positive sulphur isotope ratios in reduced sulphur species indicates a complete utilisation of sulphate by sulphate reducing bacteria.<ref>{{cite journal |last1=Williford |first1=Kenneth H. |last2=Foriel |first2=Juliet |last3=Ward |first3=Peter D. |last4=Steig |first4=Eric J. |date=1 September 2009 |title=Major perturbation in sulfur cycling at the Triassic-Jurassic boundary |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/37/9/835/30031/Major-perturbation-in-sulfur-cycling-at-the |journal=[[Geology (journal)|Geology]] |volume=37 |issue=9 |pages=835–838 |bibcode=2009Geo....37..835W |doi=10.1130/G30054A.1 |access-date=7 June 2023}}</ref> Off the shores of the Wrangellia Terrane, the onset of photic zone euxinia was preceded by an interval of limited nitrogen availability and increased nitrogen fixation in surface waters while euxinia developed in bottom waters.<ref>{{Cite journal |last1=Schoepfer |first1=Shane D. |last2=Algeo |first2=Thomas J. |last3=Ward |first3=Peter Douglas |last4=Williford |first4=Kenneth H. |last5=Haggart |first5=James W. |date=1 October 2016 |title=Testing the limits in a greenhouse ocean: Did low nitrogen availability limit marine productivity during the end-Triassic mass extinction? |journal=[[Earth and Planetary Science Letters]] |volume=451 |pages=138–148 |bibcode=2016E&PSL.451..138S |doi=10.1016/j.epsl.2016.06.050 |issn=0012-821X |doi-access=free}}</ref> Recurrent hydrogen sulphide poisoning following the TJME had retarding effects on biotic rediversification.<ref>{{cite journal |last1=Beith |first1=Sarah J. |last2=Fox |first2=Calum P. |last3=Marshall |first3=John E. A. |last4=Whiteside |first4=Jessica H. |date=15 December 2021 |title=Recurring photic zone euxinia in the northwest Tethys impinged end-Triassic extinction recovery |url=https://www.sciencedirect.com/science/article/abs/pii/S003101822100465X |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=584 |page=110680 |doi=10.1016/j.palaeo.2021.110680 |bibcode=2021PPP...58410680B |s2cid=244263152 |access-date=28 May 2023}}</ref><ref name="RichozEtAl2012" /> ==== Ocean acidification ==== Oceanic uptake of [[Volcanogenic massive sulfide ore deposit|volcanogenic]] carbon and sulphur dioxide would have led to a significant decrease of seawater pH known as [[ocean acidification]], which is discussed as a relevant driver of marine extinction,<ref name="Hautmann 2004">{{cite journal |last1=Hautmann |first1=Michael |date=28 July 2004 |title=Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction |journal=Facies |volume=50 |issue=2 |doi=10.1007/s10347-004-0020-y |s2cid=130658467}}</ref><ref name="Green 2012">{{cite journal |last1=Greene |first1=Sarah E. |last2=Martindale |first2=Rowan C. |last3=Ritterbush |first3=Kathleen A. |last4=Bottjer |first4=David J. |last5=Corsetti |first5=Frank A. |last6=Berelson |first6=William M. |date=June 2012 |title=Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary |journal=[[Earth-Science Reviews]] |volume=113 |issue=1–2 |pages=72–93 |bibcode=2012ESRv..113...72G |doi=10.1016/j.earscirev.2012.03.009}}</ref><ref>{{Cite journal |last1=Ikeda |first1=Masayuki |last2=Hori |first2=Rie S. |last3=Okada |first3=Yuki |last4=Nakada |first4=Ryoichi |date=15 December 2015 |title=Volcanism and deep-ocean acidification across the end-Triassic extinction event |url=https://www.sciencedirect.com/science/article/pii/S0031018215005568 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=440 |pages=725–733 |bibcode=2015PPP...440..725I |doi=10.1016/j.palaeo.2015.09.046 |issn=0031-0182 |access-date=12 January 2024 |via=Elsevier Science Direct}}</ref> acting in conjunction with marine anoxia.<ref>{{cite journal |last1=Fox |first1=Calum P. |last2=Whiteside |first2=Jessica H. |last3=Olsen |first3=Paul E. |last4=Cui |first4=Xingqian |last5=Summons |first5=Roger E. |last6=Idiz |first6=Erdem |last7=Grice |first7=Kliti |date=5 January 2022 |title=Two-pronged kill mechanism at the end-Triassic mass extinction |journal=[[Geology (journal)|Geology]] |volume=50 |issue=4 |pages=448–453 |bibcode=2022Geo....50..448F |doi=10.1130/G49560.1 |s2cid=245782726 |doi-access=free |hdl-access=free |hdl=20.500.11937/90125}}</ref> Additionally, acidification was enhanced and exacerbated by widespread photic zone euxinia, which caused increased rates of organic matter respiration and carbon dioxide release.<ref>{{cite journal |last1=Kasprak |first1=Alex H. |last2=Sepúlveda |first2=Julio |last3=Price-Waldman |first3=Rosalyn |last4=Williford |first4=Kenneth H. |last5=Schoepfer |first5=Shane D. |last6=Haggart |first6=James W. |last7=Ward |first7=Peter D. |last8=Summons |first8=Roger E. |last9=Whiteside |first9=Jessica H. |date=1 April 2015 |title=Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/43/4/307/131839/Episodic-photic-zone-euxinia-in-the-northeastern?redirectedFrom=fulltext |journal=[[Geology (journal)|Geology]] |volume=43 |issue=4 |pages=307–310 |bibcode=2015Geo....43..307K |doi=10.1130/G36371.1 |s2cid=132681136 |access-date=10 November 2023 |hdl-access=free |hdl=1721.1/107847}}</ref> Evidence for ocean acidification as an extinction mechanism comes from the preferential extinction of marine organisms with thick aragonitic skeletons and little biotic control of biocalcification (e.g., corals, hypercalcifying sponges),<ref>{{Cite journal |last=Galli |first=Maria Teresa |last2=Jadoul |first2=Flavio |last3=Bernasconi |first3=Stefano M. |last4=Cirilli |first4=Simonetta |last5=Weissert |first5=Helmut |date=9 February 2007 |title=Stratigraphy and palaeoenvironmental analysis of the Triassic–Jurassic transition in the western Southern Alps (Northern Italy) |url=https://www.sciencedirect.com/science/article/pii/S003101820600441X |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=244 |issue=1-4 |pages=52–70 |doi=10.1016/j.palaeo.2006.06.023 |access-date=19 February 2025 |via=Elsevier Science Direct}}</ref><ref name="Hautmann et al. 2008">{{cite journal |last1=Hautmann |first1=Michael |last2=Benton |first2=Michael J. |last3=Tomašových |first3=Adam |date=1 July 2008 |title=Catastrophic ocean acidification at the Triassic-Jurassic boundary |journal=[[Neues Jahrbuch für Geologie und Paläontologie|Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen]] |volume=249 |issue=1 |pages=119–127 |doi=10.1127/0077-7749/2008/0249-0119}}</ref> which resulted in a coral reef collapse<ref name="GeologicalRecordOceanAcid" /><ref name="OceanAcidDepTime" /> and an early Hettangian "coral gap".<ref name="EarlyHettangianCoralGap" /> The decline of megalodontoid bivalves is also attributed to increased seawater acidity.<ref>{{Cite journal |last1=Rigo |first1=Manuel |last2=Favero |first2=Marco |last3=Di Stefano |first3=Pietro |last4=Todaro |first4=Simona |date=15 November 2024 |title=Organic carbon isotope (δ13Corg) curve and extinction trends across the Triassic/Jurassic boundary at Mt. Sparagio (Italy): A tool for global correlations between peritidal and pelagic successions |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=654 |pages=112440 |doi=10.1016/j.palaeo.2024.112440 |doi-access=free |hdl-access=free |hdl=10447/651193}}</ref> Extensive fossil remains of malformed calcareous nannoplankton, a common sign of significant drops in pH, have also been extensively reported from the Triassic-Jurassic boundary.<ref name="OrganicWalledDisasterSpecies" /> Global interruption of carbonate deposition at the Triassic-Jurassic boundary has been cited as additional evidence for catastrophic ocean acidification.<ref>{{cite journal |last1=Črne |first1=Alenka E. |last2=Weissert |first2=Helmut |last3=Goričan |first3=Špela |last4=Bernasconi |first4=Stefano M. |date=1 January 2011 |title=A biocalcification crisis at the Triassic-Jurassic boundary recorded in the Budva Basin (Dinarides, Montenegro) |url=https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/123/1-2/40/125647/A-biocalcification-crisis-at-the-Triassic-Jurassic?redirectedFrom=fulltext |journal=[[Geological Society of America Bulletin]] |volume=123 |issue=1–2 |pages=40–50 |bibcode=2011GSAB..123...40C |doi=10.1130/B30157.1 |access-date=30 May 2023}}</ref><ref name="Hautmann 2004" /> Upwardly developing aragonite fans in the shallow subseafloor may also reflect decreased pH, these structures being speculated to have precipitated concomitantly with acidification.<ref name="SubseafloorCarbonateFactory">{{Cite journal |last1=Greene |first1=Sarah E. |last2=Bottjer |first2=David J. |last3=Corsetti |first3=Frank A. |last4=Berelson |first4=William M. |last5=Zonneveld |first5=John-Paul |date=2012-11-01 |title=A subseafloor carbonate factory across the Triassic-Jurassic transition |url=https://pubs.geoscienceworld.org/geology/article-abstract/40/11/1043/130752/A-subseafloor-carbonate-factory-across-the |journal=[[Geology (journal)|Geology]] |language=en |volume=40 |issue=11 |pages=1043–1046 |bibcode=2012Geo....40.1043G |doi=10.1130/G33205.1 |issn=0091-7613 |access-date=19 March 2023}}</ref> In some studied sections, the TJME biocalcification crisis is masked by emersion of carbonate platforms induced by marine regression.<ref>{{Cite journal |last1=Felber |first1=Roland |last2=Weissert |first2=Helmut J. |last3=Furrer |first3=Heinz |last4=Bontognali |first4=Tomaso R. R. |date=30 July 2015 |title=The Triassic–Jurassic boundary in the shallow-water marine carbonates from the western Northern Calcareous Alps (Austria) |journal=[[Swiss Journal of Geosciences]] |language=en |volume=108 |issue=2–3 |pages=213–224 |doi=10.1007/s00015-015-0192-1 |issn=1661-8726 |doi-access=free |hdl-access=free |hdl=20.500.11850/109482}}</ref> ==== Ozone depletion ==== Research on the role of ozone shield deterioration during the Permian-Triassic mass extinction has suggested that it may have been a factor in the TJME as well.<ref name="EnvironmentalMutagenesis">{{Cite journal |last1=Visscher |first1=Henk |last2=Looy |first2=Cindy V. |last3=Collinson |first3=Margaret E. |last4=Brinkhuis |first4=Henk |last5=Cittert |first5=Johanna H. A. van Konijnenburg-van |last6=Kürschner |first6=Wolfram M. |last7=Sephton |first7=Mark A. |date=31 August 2004 |title=Environmental mutagenesis during the end-Permian ecological crisis |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |volume=101 |issue=35 |pages=12952–12956 |bibcode=2004PNAS..10112952V |doi=10.1073/pnas.0404472101 |issn=0027-8424 |pmc=516500 |pmid=15282373 |doi-access=free}}</ref><ref name="DyingInTheSun">{{cite journal |last1=Liu |first1=Feng |last2=Peng |first2=Huiping |last3=Marshall |first3=John E. A. |last4=Lomax |first4=Barry H. |last5=Bomfleur |first5=Benjamin |last6=Kent |first6=Matthew S. |last7=Fraser |first7=Wesley T. |last8=Jardine |first8=Phillip E. |date=6 January 2023 |title=Dying in the Sun: Direct evidence for elevated UV-B radiation at the end-Permian mass extinction |journal=[[Science Advances]] |volume=9 |issue=1 |pages=eabo6102 |doi=10.1126/sciadv.abo6102 |pmid=36608140 |pmc=9821938 |bibcode=2023SciA....9O6102L }}</ref> A spike in the abundance of unseparated tetrads of ''Kraeuselisporites reissingerii'' has been interpreted as evidence of increased ultraviolet radiation flux resulting from ozone layer damage caused by volcanic aerosols.<ref>{{cite journal |last1=Van de Schootbrugge |first1=Bas |last2=Wignall |first2=Paul B. |date=26 October 2015 |title=A tale of two extinctions: converging end-Permian and end-Triassic scenarios |url=https://pubs.geoscienceworld.org/geolmag/article-abstract/153/2/332/251216/A-tale-of-two-extinctions-converging-end-Permian?redirectedFrom=fulltext |journal=[[Geological Magazine]] |volume=153 |issue=2 |pages=332–354 |doi=10.1017/S0016756815000643 |hdl=1874/329922 |s2cid=131750128 |access-date=26 May 2023|hdl-access=free }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Triassic–Jurassic extinction event
(section)
Add topic