Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Trace (linear algebra)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Characterization of the trace=== The following three properties: <math display="block">\begin{align} \operatorname{tr}(\mathbf{A} + \mathbf{B}) &= \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B}), \\ \operatorname{tr}(c\mathbf{A}) &= c \operatorname{tr}(\mathbf{A}), \\ \operatorname{tr}(\mathbf{A}\mathbf{B}) &= \operatorname{tr}(\mathbf{B}\mathbf{A}), \end{align}</math> characterize the trace [[up to]] a scalar multiple in the following sense: If <math>f</math> is a [[linear functional]] on the space of square matrices that satisfies <math>f(xy) = f(yx),</math> then <math>f</math> and <math>\operatorname{tr}</math> are proportional.<ref group="note">Proof: Let <math>e_{ij}</math> the standard basis and note that <math>f\left(e_{ij}\right) = f\left(e_{i} e_{j}^\top\right) = f\left(e_i e_1^\top e_1 e_j^\top\right) = f\left(e_1 e_j^\top e_i e_1^\top\right) = f\left(0\right) = 0</math> if <math>i \neq j</math> and <math>f\left(e_{jj}\right) = f\left(e_{11}\right)</math> <math display="block">f(\mathbf{A}) = \sum_{i, j} [\mathbf{A}]_{ij} f\left(e_{ij}\right) = \sum_i [\mathbf{A}]_{ii} f\left(e_{11}\right) = f\left(e_{11}\right) \operatorname{tr}(\mathbf{A}).</math> More abstractly, this corresponds to the decomposition <math display="block">\mathfrak{gl}_n = \mathfrak{sl}_n \oplus k,</math> as <math>\operatorname{tr}(AB) = \operatorname{tr}(BA)</math> (equivalently, <math>\operatorname{tr}([A, B]) = 0</math>) defines the trace on <math>\mathfrak{sl}_n,</math> which has complement the scalar matrices, and leaves one degree of freedom: any such map is determined by its value on scalars, which is one scalar parameter and hence all are multiple of the trace, a nonzero such map.</ref> For <math>n\times n</math> matrices, imposing the normalization <math>f(\mathbf{I}) = n</math> makes <math>f</math> equal to the trace.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Trace (linear algebra)
(section)
Add topic