Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Symmetric matrix
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Complex symmetric matrices {{anchor|Complex}}=== A complex symmetric matrix can be 'diagonalized' using a [[unitary matrix]]: thus if <math>A</math> is a complex symmetric matrix, there is a unitary matrix <math>U</math> such that <math>U A U^{\mathrm T}</math> is a real diagonal matrix with non-negative entries. This result is referred to as the '''Autonne–Takagi factorization'''. It was originally proved by [[Léon Autonne]] (1915) and [[Teiji Takagi]] (1925) and rediscovered with different proofs by several other mathematicians.<ref>{{harvnb|Horn|Johnson|2013|pp=263,278}}</ref><ref>See: *{{citation|first=L.|last= Autonne|title= Sur les matrices hypohermitiennes et sur les matrices unitaires|journal= Ann. Univ. Lyon|volume= 38|year=1915|pages= 1–77|url=https://gallica.bnf.fr/ark:/12148/bpt6k69553b}} *{{citation|first=T.|last= Takagi|title= On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau|journal= Jpn. J. Math.|volume= 1 |year=1925|pages= 83–93|doi= 10.4099/jjm1924.1.0_83|doi-access= free}} *{{citation|title=Symplectic Geometry|first=Carl Ludwig|last= Siegel|journal= American Journal of Mathematics|volume= 65|issue=1 |year=1943|pages=1–86|jstor= 2371774|doi=10.2307/2371774|id=Lemma 1, page 12}} *{{citation|first=L.-K.|last= Hua|title= On the theory of automorphic functions of a matrix variable I–geometric basis|journal= Amer. J. Math.|volume= 66 |issue= 3|year=1944|pages= 470–488|doi=10.2307/2371910|jstor= 2371910}} *{{citation|first=I.|last= Schur|title= Ein Satz über quadratische Formen mit komplexen Koeffizienten|journal=Amer. J. Math. |volume=67 |issue= 4|year=1945|pages=472–480|doi=10.2307/2371974|jstor= 2371974}} *{{citation|first1=R.|last1= Benedetti|first2=P.|last2= Cragnolini|title=On simultaneous diagonalization of one Hermitian and one symmetric form|journal= Linear Algebra Appl. |volume=57 |year=1984| pages=215–226|doi=10.1016/0024-3795(84)90189-7|doi-access=free}} </ref> In fact, the matrix <math>B=A^{\dagger} A</math> is Hermitian and [[Definiteness of a matrix|positive semi-definite]], so there is a unitary matrix <math>V</math> such that <math>V^{\dagger} B V</math> is diagonal with non-negative real entries. Thus <math>C=V^{\mathrm T} A V</math> is complex symmetric with <math>C^{\dagger}C</math> real. Writing <math>C=X+iY</math> with <math>X</math> and <math>Y</math> real symmetric matrices, <math>C^{\dagger}C=X^2+Y^2+i(XY-YX)</math>. Thus <math>XY=YX</math>. Since <math>X</math> and <math>Y</math> commute, there is a real orthogonal matrix <math>W</math> such that both <math>W X W^{\mathrm T}</math> and <math>W Y W^{\mathrm T}</math> are diagonal. Setting <math>U=W V^{\mathrm T}</math> (a unitary matrix), the matrix <math>UAU^{\mathrm T}</math> is complex diagonal. Pre-multiplying <math>U</math> by a suitable diagonal unitary matrix (which preserves unitarity of <math>U</math>), the diagonal entries of <math>UAU^{\mathrm T}</math> can be made to be real and non-negative as desired. To construct this matrix, we express the diagonal matrix as <math>UAU^\mathrm T = \operatorname{diag}(r_1 e^{i\theta_1},r_2 e^{i\theta_2}, \dots, r_n e^{i\theta_n})</math>. The matrix we seek is simply given by <math>D = \operatorname{diag}(e^{-i\theta_1/2},e^{-i\theta_2/2}, \dots, e^{-i\theta_n/2})</math>. Clearly <math>DUAU^\mathrm TD = \operatorname{diag}(r_1, r_2, \dots, r_n)</math> as desired, so we make the modification <math>U' = DU</math>. Since their squares are the eigenvalues of <math>A^{\dagger} A</math>, they coincide with the [[singular value]]s of <math>A</math>. (Note, about the eigen-decomposition of a complex symmetric matrix <math>A</math>, the Jordan normal form of <math>A</math> may not be diagonal, therefore <math>A</math> may not be diagonalized by any similarity transformation.)
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Symmetric matrix
(section)
Add topic