Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Sufficient statistic
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Minimal sufficiency== A sufficient statistic is '''minimal sufficient''' if it can be represented as a function of any other sufficient statistic. In other words, ''S''(''X'') is '''minimal sufficient''' if and only if<ref>Dodge (2003) — entry for minimal sufficient statistics</ref> #''S''(''X'') is sufficient, and #if ''T''(''X'') is sufficient, then there exists a function ''f'' such that ''S''(''X'') = ''f''(''T''(''X'')). Intuitively, a minimal sufficient statistic ''most efficiently'' captures all possible information about the parameter ''θ''. A useful characterization of minimal sufficiency is that when the density ''f''<sub>''θ''</sub> exists, ''S''(''X'') is '''minimal sufficient''' if and only if{{Citation needed|reason=The classical result (e.g., Theorem 6.2.13 in Casella and Berger) only gives a sufficient condition, not a characterization|date=September 2023}} :<math>\frac{f_\theta(x)}{f_\theta(y)}</math> is independent of ''θ'' :<math>\Longleftrightarrow</math> ''S''(''x'') = ''S''(''y'') This follows as a consequence from [[#Fisher–Neyman factorization theorem|Fisher's factorization theorem]] stated above. A case in which there is no minimal sufficient statistic was shown by Bahadur, 1954.<ref>Lehmann and Casella (1998), ''Theory of Point Estimation'', 2nd Edition, Springer, p 37</ref> However, under mild conditions, a minimal sufficient statistic does always exist. In particular, in Euclidean space, these conditions always hold if the random variables (associated with <math>P_\theta</math> ) are all discrete or are all continuous. If there exists a minimal sufficient statistic, and this is usually the case, then every [[Completeness (statistics)|complete]] sufficient statistic is necessarily minimal sufficient<ref>Lehmann and Casella (1998), ''Theory of Point Estimation'', 2nd Edition, Springer, page 42</ref> (note that this statement does not exclude a pathological case in which a complete sufficient exists while there is no minimal sufficient statistic). While it is hard to find cases in which a minimal sufficient statistic does not exist, it is not so hard to find cases in which there is no complete statistic. The collection of likelihood ratios <math>\left\{\frac{L(X \mid \theta_i)}{L(X \mid \theta_0)}\right\}</math> for <math>i = 1, ..., k</math>, is a minimal sufficient statistic if the parameter space is discrete <math>\left\{\theta_0, ..., \theta_k\right\}</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Sufficient statistic
(section)
Add topic