Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Splitting field
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== The complex numbers === Consider the [[polynomial ring]] '''R'''[''x''], and the [[irreducible polynomial]] {{nowrap|1=''x''<sup>2</sup> + 1.}} The [[quotient ring]] {{nowrap|1='''R'''[''x''] / (''x''<sup>2</sup> + 1)}} is given by the [[Congruence relation|congruence]] {{nowrap|1=''x''<sup>2</sup> ≡ −1.}} As a result, the elements (or [[equivalence class]]es) of {{nowrap|1='''R'''[''x''] / (''x''<sup>2</sup> + 1)}} are of the form {{nowrap|1=''a'' + ''bx''}} where ''a'' and ''b'' belong to '''R'''. To see this, note that since {{nowrap|1=''x''<sup>2</sup> ≡ −1}} it follows that {{nowrap|1=''x''<sup>3</sup> ≡ −''x''}}, {{nowrap|1=''x''<sup>4</sup> ≡ 1}}, {{nowrap|1=''x''<sup>5</sup> ≡ ''x''}}, etc.; and so, for example {{nowrap|1=''p'' + ''qx'' + ''rx''<sup>2</sup> + ''sx''<sup>3</sup> ≡ ''p'' + ''qx'' + ''r''(−1) + ''s''(−''x'') = (''p'' − ''r'') + (''q'' − ''s'')''x''.}} The addition and multiplication operations are given by firstly using ordinary polynomial addition and multiplication, but then reducing modulo {{nowrap|1=''x''<sup>2</sup> + 1}}, i.e. using the fact that {{nowrap|1=''x''<sup>2</sup> ≡ −1}}, {{nowrap|1=''x''<sup>3</sup> ≡ −''x''}}, {{nowrap|1=''x''<sup>4</sup> ≡ 1}}, {{nowrap|1=''x''<sup>5</sup> ≡ ''x''}}, etc. Thus: :<math>(a_1 + b_1x) + (a_2 + b_2x) = (a_1 + a_2) + (b_1 + b_2)x, </math> :<math>(a_1 + b_1x)(a_2 + b_2x) = a_1a_2 + (a_1b_2 + b_1a_2)x + (b_1b_2)x^2 \equiv (a_1a_2 - b_1b_2) + (a_1b_2 + b_1a_2)x \, . </math> If we identify {{nowrap|1=''a'' + ''bx''}} with (''a'',''b'') then we see that addition and multiplication are given by :<math>(a_1,b_1) + (a_2,b_2) = (a_1 + a_2,b_1 + b_2), </math> :<math>(a_1,b_1)\cdot (a_2,b_2) = (a_1a_2 - b_1b_2,a_1b_2 + b_1a_2). </math> We claim that, as a field, the quotient ring {{nowrap|1='''R'''[''x''] / (''x''<sup>2</sup> + 1)}} is [[isomorphic]] to the [[complex number]]s, '''C'''. A general complex number is of the form {{nowrap|1=''a'' + ''bi''}}, where ''a'' and ''b'' are real numbers and {{nowrap|1=''i''<sup>2</sup> = −1.}} Addition and multiplication are given by :<math>(a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + i(b_1 + b_2),</math> :<math>(a_1 + b_1 i) \cdot (a_2 + b_2 i) = (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1).</math> If we identify {{nowrap|1=''a'' + ''bi''}} with (''a'', ''b'') then we see that addition and multiplication are given by :<math>(a_1,b_1) + (a_2,b_2) = (a_1 + a_2,b_1 + b_2),</math> :<math>(a_1,b_1)\cdot (a_2,b_2) = (a_1a_2 - b_1b_2,a_1b_2 + b_1a_2).</math> The previous calculations show that addition and multiplication behave the same way in {{nowrap|1='''R'''[''x''] / (''x''<sup>2</sup> + 1)}} and '''C'''. In fact, we see that the map between {{nowrap|1='''R'''[''x''] / (''x''<sup>2</sup> + 1)}} and '''C''' given by {{nowrap|1=''a'' + ''bx'' → ''a'' + ''bi''}} is a [[homomorphism]] with respect to addition ''and'' multiplication. It is also obvious that the map {{nowrap|1=''a'' + ''bx'' → ''a'' + ''bi''}} is both [[injective]] and [[surjective]]; meaning that {{nowrap|1=''a'' + ''bx'' → ''a'' + ''bi''}} is a [[bijective]] homomorphism, i.e., an [[ring isomorphism|isomorphism]]. It follows that, as claimed: {{nowrap|1='''R'''[''x''] / (''x''<sup>2</sup> + 1) ≅ '''C'''.}} In 1847, [[Augustin-Louis Cauchy|Cauchy]] used this approach to ''define'' the complex numbers.<ref>{{Citation|last = Cauchy|first = Augustin-Louis|author-link = Augustin-Louis Cauchy|title = Mémoire sur la théorie des équivalences algébriques, substituée à la théorie des imaginaires|journal = [[Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences]]|volume = 24|year = 1847|language = fr|pages = 1120–1130}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Splitting field
(section)
Add topic