Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Riemann zeta function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Zero-free region === The location of the Riemann zeta function's zeros is of great importance in number theory. The [[prime number theorem]] is equivalent to the fact that there are no zeros of the zeta function on the {{math|Re(''s'') {{=}} 1}} line.<ref name="Diamond1982">{{cite journal|first=Harold G.|last=Diamond|title=Elementary methods in the study of the distribution of prime numbers|journal=Bulletin of the American Mathematical Society|volume=7|issue=3|year=1982|pages=553–89|mr=670132|doi=10.1090/S0273-0979-1982-15057-1|doi-access=free}}</ref> It is also known that zeros do not exist in certain regions slightly to the left of the {{math|Re(''s'') {{=}} 1}} line, known as zero-free regions. For instance, Korobov<ref>{{cite journal | first1 = Nikolai Mikhailovich| last1 = Korobov | title = Estimates of trigonometric sums and their applications | journal = Usp. Mat. Nauk | volume = 13 | number = 4 | year = 1958 | pages =185–192 }}</ref> and Vinogradov<ref>{{cite journal | first1 = I.M.| last1 = Vinogradov | title = Eine neue Abschätzung der Funktion <math>\zeta(1+ it)</math>| journal = Russian. Izv. Akad. Nauk SSSR, Ser. Mat | volume = 22 | year = 1958 | pages =161–164 }}</ref> independently showed via the [[Vinogradov's mean-value theorem]] that for sufficiently large <math>|t|</math>, <math>\zeta(\sigma + it) \neq 0</math> for :<math>\sigma \geq 1 - \frac{c}{(\log|t|)^{2/3 + \varepsilon}}</math> for any <math>\varepsilon > 0</math> and a number <math>c >0</math> depending on <math>\varepsilon</math>. Asymptotically, this is the largest known zero-free region for the zeta function. Explicit zero-free regions are also known. Platt and Trudgian<ref>{{cite journal | first1 = David| last1 = Platt | first2= Timothy S. | last2= Trudgian | title = The Riemann hypothesis is true up to <math>3\cdot 10^{12}</math> | journal = Bulletin of the London Mathematical Society| volume = 53 | number = 3 | year = 2021 | pages =792–797 | doi = 10.1112/blms.12460 | arxiv = 2004.09765}}</ref> verified computationally that <math>\zeta(\sigma + it)\neq 0</math> if <math>\sigma \neq 1/2</math> and <math>|t| \leq 3\cdot 10^{12}</math>. Mossinghoff, Trudgian and Yang proved<ref>{{cite journal | first1 = Michael J. | last1 = Mossinghoff | first2 = Timothy S. | last2 = Trudgian |first3 = Andrew | last3 = Yang | title = Explicit zero-free regions for the Riemann zeta-function | journal = Res. Number Theory | volume = 10 | year = 2024 | pages = 11 | arxiv = 2212.06867 | doi = 10.1007/s40993-023-00498-y }}</ref> that zeta has no zeros in the region :<math>\sigma\ge 1 - \frac{1}{5.558691\log|t|}</math> for {{math|{{abs|''t''}} ≥ 2}}, which is the largest known zero-free region in the critical strip for <math>3\cdot 10^{12} < |t| < e^{64.1} \approx 7 \cdot 10^{27}</math> (for previous results see<ref>{{cite journal | first1 = Michael J. | last1 = Mossinghoff | first2 = Timothy S. | last2 = Trudgian | title = Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function | journal = J. Number Theory | volume = 157 | year = 2015 | pages = 329–349 | arxiv = 1410.3926 | doi = 10.1016/J.JNT.2015.05.010| s2cid = 117968965 }}</ref>). Yang<ref>{{cite journal | first1 = Andrew| last1 = Yang | title =Explicit bounds on <math>\zeta(s)</math> in the critical strip and a zero-free region | journal = J. Math. Anal. Appl.| volume = 534 | number = 2 | year = 2024 | pages =128124 | doi=10.1016/j.jmaa.2024.128124 | arxiv = 2301.03165 }}</ref> showed that <math>\zeta(\sigma+it)\neq 0</math> if :<math>\sigma \geq 1 - \frac{\log\log|t|}{21.233\log|t|}</math> and <math>|t|\geq 3</math> which is the largest known zero-free region for <math>e^{170.2}< |t| < e^{4.8\cdot 10^{5}}</math>. Bellotti proved<ref>{{cite journal | first1 = Chiara| last1 = Bellotti | title =Explicit bounds for the Riemann zeta function and a new zero-free region | journal = J. Math. Anal. Appl.| volume = 536 | number = 2 | year = 2024 | pages =128249 | doi = 10.1016/j.jmaa.2024.128249 | arxiv = 2306.10680}}</ref> (building on the work of Ford<ref>{{cite journal | last1 = Ford | first1 = K. | year = 2002 | title = Vinogradov's integral and bounds for the Riemann zeta function | journal = Proc. London Math. Soc. | volume = 85 | issue = 3| pages = 565–633 | doi = 10.1112/S0024611502013655 | arxiv = 1910.08209 | s2cid = 121144007 }}</ref>) the zero-free region :<math>\sigma \ge 1 - \frac{1}{53.989(\log|t|)^{2/3}(\log\log|t|)^{1/3}}</math> and <math>|t| \ge 3</math>. This is the largest known zero-free region for fixed <math>|t| \geq \exp(4.8\cdot 10^{5}).</math> Bellotti also showed that for sufficiently large <math>|t|</math>, the following better result is known: <math>\zeta(\sigma +it) \neq 0</math> for :<math>\sigma \geq 1 - \frac{1}{48.0718(\log|t|)^{2/3}(\log\log|t|)^{1/3}}.</math> The strongest result of this kind one can hope for is the truth of the Riemann hypothesis, which would have many profound [[Riemann hypothesis#Consequences|consequences]] in the theory of numbers.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Riemann zeta function
(section)
Add topic