Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ribosome
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Making use of the differences=== The differences between the bacterial and eukaryotic ribosomes are exploited by [[medicinal chemistry|pharmaceutical chemists]] to create [[antibiotic]]s that can destroy a bacterial infection without harming the cells of the infected person. Due to the differences in their structures, the bacterial 70S ribosomes are vulnerable to these antibiotics while the eukaryotic 80S ribosomes are not.<ref name="Recht-1999">{{cite journal | vauthors = Recht MI, Douthwaite S, Puglisi JD | title = Basis for prokaryotic specificity of action of aminoglycoside antibiotics | journal = The EMBO Journal | volume = 18 | issue = 11 | pages = 3133β8 | date = June 1999 | pmid = 10357824 | pmc = 1171394 | doi = 10.1093/emboj/18.11.3133 }}</ref> Even though [[mitochondria]] possess ribosomes similar to the bacterial ones, mitochondria are not affected by these antibiotics because they are surrounded by a double membrane that does not easily admit these antibiotics into the [[organelle]].<ref>{{cite journal | vauthors = O'Brien TW | title = The general occurrence of 55 S ribosomes in mammalian liver mitochondria | journal = The Journal of Biological Chemistry | volume = 246 | issue = 10 | pages = 3409β17 | date = May 1971 | doi = 10.1016/S0021-9258(18)62239-2 | pmid = 4930061 | doi-access = free }}</ref> A noteworthy counterexample is the antineoplastic antibiotic [[chloramphenicol]], which inhibits bacterial 50S and eukaryotic mitochondrial 50S ribosomes.<ref>{{Cite journal|date=1970-08-17|title=Chloramphenicol-lnduced Bone Marrow Suppression|url=https://jamanetwork.com/journals/jama/fullarticle/356164|journal=JAMA|language=en|volume=213|issue=7|pages=1183β1184|doi=10.1001/jama.1970.03170330063011|pmid=5468266|issn=0098-7484}}</ref> Ribosomes in chloroplasts, however, are different: Antibiotic resistance in chloroplast ribosomal proteins is a trait that has to be introduced as a marker, with genetic engineering.<ref>{{cite journal | vauthors = Newman SM, Boynton JE, Gillham NW, Randolph-Anderson BL, Johnson AM, Harris EH | title = Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events | journal = Genetics | volume = 126 | issue = 4 | pages = 875β88 | date = December 1990 | doi = 10.1093/genetics/126.4.875 | pmid = 1981764 | pmc = 1204285 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ribosome
(section)
Add topic