Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Refractive index
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Principal refractive index wavelength ambiguity=== Because of dispersion, it is usually important to specify the vacuum wavelength of light for which a refractive index is measured. Typically, measurements are done at various well-defined spectral [[emission line]]s. Manufacturers of optical glass in general define principal index of refraction at yellow spectral line of helium ({{val|587.56|u=nm}}) and alternatively at a green spectral line of mercury ({{val|546.07|u=nm}}), called {{mvar|d}} and {{mvar|e}} lines respectively. [[Abbe number]] is defined for both and denoted {{mvar|V<sub>d</sub>}} and {{mvar|V<sub>e</sub>}}. The spectral data provided by glass manufacturers is also often more precise for these two wavelengths.<ref>{{cite web |author= Schott Company |date= <!-- undated --> |title= Interactive Abbe Diagram |url= https://www.schott.com/en-pl/interactive-abbe-diagram |access-date= 2023-08-13 |website= Schott.com}}</ref><ref>{{cite web |author= Ohara Corporation |date= <!-- undated --> |title= Optical Properties |url= https://www.oharacorp.com/o2.html |access-date= 2022-08-15 |website= Oharacorp.com }}</ref><ref>{{cite web |author= Hoya Group |date= <!-- undated --> |title= Optical Properties |url= https://www.hoya-opticalworld.com/english/technical/002.html |access-date= 2023-08-13 |website=Hoya Group Optics Division}}</ref><ref>{{cite book |last1= Lentes |first1= Frank-Thomas |last2= Clement |first2= Marc K. Th. |last3= Neuroth |first3= Norbert |last4= Hoffmann |first4= Hans-Jürgen |last5= Hayden |first5= Yuiko T. |last6= Hayden |first6= Joseph S. |last7= Kolberg |first7= Uwe |last8= Wolff |first8= Silke |editor-last1= Bach |editor-first1= Hans |editor-last2= Neuroth |editor-first2= Norbert |date= 1998 |title=The Properties of Optical Glass |chapter= Optical Properties |series=Schott Series on Glass and Glass Ceramics |page= 30 |language=en |doi= 10.1007/978-3-642-57769-7 |isbn= 978-3-642-63349-2 }}</ref> Both, {{mvar|d}} and {{mvar|e}} spectral lines are singlets and thus are suitable to perform a very precise measurements, such as spectral goniometric method.<ref>{{cite conference |last1= Krey |first1= Stefan |last2= Off |first2= Dennis |last3= Ruprecht |first3= Aiko |editor-last1= Soskind |editor-first1= Yakov G. |editor-last2= Olson |editor-first2= Craig |date= 2014-03-08 |title= Measuring the Refractive Index with Precision Goniometers: A Comparative Study |url= https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8992/89920D/Measuring-the-refractive-index-with-precision-goniometers--a-comparative/10.1117/12.2041760.full |conference= SPIE OPTO, 2014 |location= San Francisco, California |book-title= Proc. SPIE 8992, Photonic Instrumentation Engineering |publisher= SPIE |volume= 8992 |pages= 56–65 |doi= 10.1117/12.2041760 |bibcode= 2014SPIE.8992E..0DK |s2cid= 120544352 }}</ref><ref>{{Cite book |last1=Rupp |first1=Fabian |last2=Jedamzik |first2=Ralf |last3=Bartelmess |first3=Lothar |last4=Petzold |first4=Uwe |title=Optical Fabrication, Testing, and Metrology VII |chapter=The modern way of refractive index measurement of optical glass at SCHOTT |journal=Optical Fabrication |editor-first1=Reinhard |editor-first2=Roland |editor-first3=Deitze |editor-last1=Völkel |editor-last2=Geyl |editor-last3=Otaduy |date=2021-09-12 |chapter-url=https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11873/1187308/The-modern-way-of-refractive-index-measurement-of-optical-glass/10.1117/12.2597023.full |publisher=SPIE |volume=11873 |pages=15–22 |doi=10.1117/12.2597023|bibcode=2021SPIE11873E..08R |isbn=9781510645905 |s2cid=240561530 }}</ref> In practical applications, measurements of refractive index are performed on various refractometers, such as [[Abbe refractometer]]. Measurement accuracy of such typical commercial devices is in the order of 0.0002.<ref>{{Cite web |title=Abbe Refractometer{{!}} ATAGO CO., LTD. |url=https://www.atago.net/en/products-abbe-top.php |access-date=2022-08-15 |website=www.atago.net}}</ref><ref>{{Cite web |title=Abbe Multi-Wavelength Refractometer |url=https://www.novatech-usa.com/1412-DR-M2-1550_2 |access-date=2022-08-15 |website=Nova-Tech International |language=en-US}}</ref> Refractometers usually measure refractive index {{mvar|n<sub>D</sub>}}, defined for sodium doublet {{mvar|D}} ({{val|589.29|u=nm}}), which is actually a midpoint between two adjacent yellow spectral lines of sodium. Yellow spectral lines of helium ({{mvar|d}}) and sodium ({{mvar|D}}) are {{val|1.73|u=nm}} apart, which can be considered negligible for typical refractometers, but can cause confusion and lead to errors if accuracy is critical. All three typical principle refractive indices definitions can be found depending on application and region,<ref>{{Cite book |url=https://link.springer.com/book/10.1007/978-3-642-57769-7 |title=The Properties of Optical Glass |series=Schott Series on Glass and Glass Ceramics |year=1998 |pages=267 |language=en |doi=10.1007/978-3-642-57769-7|isbn=978-3-642-63349-2 |editor1=Bach, Hans |editor2=Neuroth, Norbert }}</ref> so a proper subscript should be used to avoid ambiguity.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Refractive index
(section)
Add topic