Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Redshift
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Summary table === Several important special-case formulae for redshift in certain special spacetime geometries, as summarized in the following table. In all cases the magnitude of the shift (the value of {{math|''z''}}) is independent of the wavelength.<ref name="basicastronomy">See Binney and Merrifeld (1998), Carroll and Ostlie (1996), Kutner (2003) for applications in astronomy.</ref> {| class="wikitable" style="max-width:1000px;" |+ Redshift summary ! Redshift type !! Geometry !! Formulae<ref>Where z = redshift; v<sub>||</sub> = [[velocity]] parallel to line-of-sight (positive if moving away from receiver); c = [[speed of light]]; ''γ'' = [[Lorentz factor]]; ''a'' = [[scale factor (Universe)|scale factor]]; G = [[gravitational constant]]; M = object [[mass]]; r = [[Schwarzschild coordinates|radial Schwarzschild coordinate]], g<sub>tt</sub> = t,t component of the [[metric tensor]]</ref> |- | [[Relativistic Doppler effect|Relativistic Doppler]]|| [[Minkowski space]]<br />(flat spacetime) || For motion completely in the radial or<br />line-of-sight direction: :<big><math>1 + z = \gamma \left(1 + \frac{v_{\parallel}}{c}\right) = \sqrt{\frac{1+\frac{v_{\parallel}}{c}}{1-\frac{v_{\parallel}}{c}}}</math></big> :<math>z \approx \frac{v_{\parallel}}{c}</math> for small <math>v_{\parallel}</math> <br /> For motion completely in the transverse direction: :<math>1 + z=\frac{1}{\sqrt{1-\frac{v_\perp^2}{c^2}}}</math> :<math>z \approx \frac{1}{2} \left( \frac{v_{\perp}}{c} \right)^2</math> for small <math>v_{\perp}</math> |- | [[Cosmological redshift]]|| [[Friedmann–Lemaître–Robertson–Walker|FLRW spacetime]]<br />(expanding Big Bang universe) || :<math>1 + z = \frac{a_{\mathrm{now}}}{a_{\mathrm{then}}}</math> [[Hubble's law]]: :<math>z \approx \frac{H_0 D}{c}</math> for <math>D \ll \frac{c}{H_0}</math> |- | [[Gravitational redshift]]|| Any [[stationary spacetime]] || :<math>1 + z = \sqrt{\frac{g_{tt}(\text{receiver})}{g_{tt}(\text{source})}}</math> For the [[Schwarzschild geometry]]: :<big><math>1 + z = \sqrt{\frac{1 - \frac{r_S}{r_{\text{receiver}}}}{1 - \frac{r_S}{r_{\text{source} }}}} = \sqrt{\frac{1 - \frac{2GM}{ c^2 r_{\text{receiver}}}}{1 - \frac{2GM}{ c^2 r_{\text{source} }}}} </math></big> :<big><math>z \approx \frac{1}{2} \left( \frac{r_S}{r_\text{source}} - \frac{r_S}{r_\text{receiver}} \right)</math> for <math>r \gg r_S</math></big> In terms of [[escape velocity]]: :<math>z \approx \frac{1}{2} \left(\frac{v_\text{e}}{c}\right)_\text{source}^2 - \frac{1}{2} \left(\frac{v_\text{e}}{c}\right)_\text{receiver}^2 </math> for <math>v_\text{e} \ll c</math> |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Redshift
(section)
Add topic