Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Polygon
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Angles=== Any polygon has as many corners as it has sides. Each corner has several angles. The two most important ones are: * '''[[Interior angle]]''' – The sum of the interior angles of a simple ''n''-gon is {{nowrap|(''n'' − 2) × [[Pi|π]]}} [[radian]]s or {{nowrap|(''n'' − 2) × 180}} [[degree (angle)|degrees]]. This is because any simple ''n''-gon ( having ''n'' sides ) can be considered to be made up of {{nowrap|(''n'' − 2)}} triangles, each of which has an angle sum of π radians or 180 degrees. The measure of any interior angle of a convex regular ''n''-gon is <math>\left(1-\tfrac{2}{n}\right)\pi</math> radians or <math>180-\tfrac{360}{n}</math> degrees. The interior angles of regular [[star polygon]]s were first studied by Poinsot, in the same paper in which he describes the four [[Kepler–Poinsot polyhedron|regular star polyhedra]]: for a regular <math>\tfrac{p}{q}</math>-gon (a ''p''-gon with central density ''q''), each interior angle is <math>\tfrac{\pi(p-2q)}{p}</math> radians or <math>\tfrac{180(p-2q)}{p}</math> degrees.<ref>{{cite book |last=Kappraff |first=Jay |title=Beyond measure: a guided tour through nature, myth, and number |publisher=World Scientific |year=2002 |page=258 |isbn= 978-981-02-4702-7 |url=https://books.google.com/books?id=vAfBrK678_kC&q=star+polygon&pg=PA256}}</ref> * '''[[Exterior angle]]''' – The exterior angle is the [[supplementary angle]] to the interior angle. Tracing around a convex ''n''-gon, the angle "turned" at a corner is the exterior or external angle. Tracing all the way around the polygon makes one full [[Turn (geometry)|turn]], so the sum of the exterior angles must be 360°. This argument can be generalized to concave simple polygons, if external angles that turn in the opposite direction are subtracted from the total turned. Tracing around an ''n''-gon in general, the sum of the exterior angles (the total amount one rotates at the vertices) can be any integer multiple ''d'' of 360°, e.g. 720° for a [[pentagram]] and 0° for an angular "eight" or [[antiparallelogram]], where ''d'' is the [[Density (polytope)#Polygons|density]] or [[turning number]] of the polygon.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Polygon
(section)
Add topic