Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Pauli matrices
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Determinant === The norm is given by the determinant (up to a minus sign) <math display="block"> \det \bigl( \vec{a} \cdot \vec{\sigma} \bigr) = -\vec{a} \cdot \vec{a} = -|\vec{a}|^2. </math> Then, considering the conjugation action of an <math>\text{SU}(2)</math> matrix <math>U</math> on this space of matrices, : <math>U * \vec a \cdot \vec \sigma := U \, \vec a \cdot \vec \sigma \, U^{-1},</math> we find <math>\det(U * \vec a \cdot \vec\sigma) = \det(\vec a \cdot \vec \sigma),</math> and that <math>U * \vec a \cdot \vec \sigma</math> is Hermitian and traceless. It then makes sense to define <math>U * \vec a \cdot \vec\sigma = \vec a' \cdot \vec\sigma,</math> where <math>\vec a'</math> has the same norm as <math>\vec a,</math> and therefore interpret <math>U</math> as a rotation of three-dimensional space. In fact, it turns out that the ''special'' restriction on <math>U</math> implies that the rotation is orientation preserving. This allows the definition of a map <math>R: \mathrm{SU}(2) \to \mathrm{SO}(3)</math> given by : <math>U * \vec a \cdot \vec \sigma = \vec a' \cdot \vec \sigma =: (R(U)\ \vec a) \cdot \vec \sigma,</math> where <math>R(U) \in \mathrm{SO}(3).</math> This map is the concrete realization of the double cover of <math>\mathrm{SO}(3)</math> by <math>\mathrm{SU}(2),</math> and therefore shows that <math>\text{SU}(2) \cong \mathrm{Spin}(3).</math> The components of <math>R(U)</math> can be recovered using the tracing process above: : <math>R(U)_{ij} = \frac{1}{2} \operatorname{tr} \left( \sigma_i U \sigma_j U^{-1} \right).</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Pauli matrices
(section)
Add topic