Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Navier–Stokes equations
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Weak form==== In order to find the weak form of the Navier–Stokes equations, firstly, consider the momentum equation<ref name="Quarteroni" /> <math display="block"> \rho \frac{\partial \mathbf{u}}{\partial t} - \mu \Delta \mathbf{u} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mathbf{f} </math> multiply it for a test function <math display="inline"> \mathbf{v} </math>, defined in a suitable space <math display="inline"> V </math>, and integrate both members with respect to the domain <math display="inline"> \Omega </math>:<ref name="Quarteroni" /> <math display="block"> \int \limits_\Omega \rho \frac{\partial \mathbf{u}}{\partial t}\cdot \mathbf{v} - \int \limits_\Omega \mu \Delta \mathbf{u} \cdot \mathbf{v} + \int \limits_\Omega \rho (\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{v} + \int \limits_\Omega \nabla p \cdot \mathbf{v} = \int \limits_\Omega \mathbf{f} \cdot \mathbf{v} </math> Counter-integrating by parts the diffusive and the pressure terms and by using the Gauss' theorem:<ref name="Quarteroni" /> <math display="block">\begin{align} -\int \limits_\Omega \mu \Delta \mathbf{u} \cdot \mathbf{v} &= \int_\Omega \mu \nabla \mathbf{u} \cdot \nabla \mathbf{v} - \int \limits_{\partial \Omega} \mu \frac{\partial \mathbf{u}}{\partial \hat{\mathbf{n}}} \cdot \mathbf{v} \\ \int \limits_\Omega \nabla p \cdot \mathbf{v} &= -\int \limits_\Omega p \nabla \cdot \mathbf{v} + \int \limits_{\partial \Omega} p \mathbf{v} \cdot {\hat{\mathbf{n}}} \end{align}</math> Using these relations, one gets:<ref name="Quarteroni" /> <math display="block"> \int \limits_\Omega \rho \dfrac{\partial \mathbf{u}}{\partial t}\cdot \mathbf{v} + \int \limits_\Omega \mu \nabla \mathbf{u} \cdot \nabla \mathbf{v} + \int \limits_\Omega \rho (\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{v} - \int \limits_\Omega p \nabla \cdot \mathbf{v} = \int \limits_\Omega \mathbf{f} \cdot \mathbf{v} + \int \limits_{\partial \Omega} \left ( \mu \frac{\partial \mathbf{u}}{\partial \hat{\mathbf{n}}} - p \hat{\mathbf{n}}\right) \cdot \mathbf{v} \quad \forall \mathbf{v} \in V. </math> In the same fashion, the continuity equation is multiplied for a test function {{mvar|q}} belonging to a space <math display="inline"> Q </math> and integrated in the domain <math display="inline"> \Omega </math>:<ref name="Quarteroni" /> <math display="block">\int \limits_\Omega q \nabla \cdot \mathbf{u} = 0. \quad \forall q \in Q. </math> The space functions are chosen as follows: <math display="block">\begin{align} V = \left[H_0^1(\Omega) \right]^d &= \left\{ \mathbf{v} \in \left[H^1(\Omega)\right]^d: \quad \mathbf{v} = \mathbf{0} \text{ on } \Gamma_D \right\}, \\ Q &= L^2(\Omega) \end{align}</math> Considering that the test function {{math|'''''v'''''}} vanishes on the Dirichlet boundary and considering the Neumann condition, the integral on the boundary can be rearranged as:<ref name="Quarteroni" /> <math display="block"> \int \limits_{\partial \Omega} \left ( \mu \frac{\partial \mathbf{u}}{\partial \hat{\mathbf{n}}} - p \hat{\mathbf{n}} \right) \cdot \mathbf{v} = \underbrace{ \int \limits_{\Gamma_D} \left ( \mu \frac{\partial \mathbf{u}}{\partial \hat{\mathbf{n}}} - p \hat{\mathbf{n}} \right) \cdot \mathbf{v} }_{ \mathbf{v} = \mathbf{0} \text{ on } \Gamma_D \ } + \int \limits_{\Gamma_N} \underbrace{ \vphantom{\int \limits_{\Gamma_N} } \left ( \mu \frac{\partial \mathbf{u}}{\partial \hat{\mathbf{n}}} - p \hat{\mathbf{n}} \right) }_{= \mathbf{h} \text{ on } \Gamma_N} \cdot \mathbf{v} = \int \limits_{\Gamma_N} \mathbf{h} \cdot \mathbf{v}. </math> Having this in mind, the weak formulation of the Navier–Stokes equations is expressed as:<ref name="Quarteroni" /> <math display="block">\begin{align} &\text{find } \mathbf{u} \in L^2 \left(\mathbb R^+\; \left[H^1(\Omega)\right]^d\right) \cap C^0\left(\mathbb R^+ \; \left[L^2(\Omega)\right]^d\right) \text{ such that: } \\[5pt] &\quad\begin{cases} \displaystyle \int \limits_{\Omega}\rho \dfrac{\partial \mathbf{u}}{\partial t}\cdot \mathbf{v} + \int \limits_{\Omega} \mu \nabla \mathbf{u} \cdot \nabla \mathbf{v} + \int \limits_{\Omega} \rho (\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{v} - \int \limits_{\Omega} p \nabla \cdot \mathbf{v} = \int \limits_{\Omega}\mathbf{f} \cdot \mathbf{v} + \int \limits_{\Gamma_N} \mathbf{h} \cdot \mathbf{v} \quad \forall \mathbf{v} \in V, \\ \displaystyle \int \limits_{\Omega} q \nabla \cdot \mathbf{u} = 0 \quad \forall q \in Q. \end{cases}\end{align} </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Navier–Stokes equations
(section)
Add topic