Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Natural logarithm
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Series == [[File:LogTay.svg|290px|thumb|right|The Taylor polynomials for {{math|ln(1 + ''x'')}} only provide accurate approximations in the range {{math|−1 < ''x'' ≤ 1}}. Beyond some {{math|''x'' > 1}}, the Taylor polynomials of higher degree are increasingly ''worse'' approximations.]] Since the natural logarithm is undefined at 0, <math>\ln(x)</math> itself does not have a [[Maclaurin series]], unlike many other elementary functions. Instead, one looks for Taylor expansions around other points. For example, if <math>\vert x - 1 \vert \leq 1 \text{ and } x \neq 0, </math> then<ref>{{cite web| url = http://www.math2.org/math/expansion/log.htm| title = "Logarithmic Expansions" at Math2.org}}</ref> <math display="block">\begin{align} \ln x &= \int_1^x \frac{1}{t} \, dt = \int_0^{x - 1} \frac{1}{1 + u} \, du \\ &= \int_0^{x - 1} (1 - u + u^2 - u^3 + \cdots) \, du \\ &= (x - 1) - \frac{(x - 1)^2}{2} + \frac{(x - 1)^3}{3} - \frac{(x - 1)^4}{4} + \cdots \\ &= \sum_{k=1}^\infty \frac{(-1)^{k-1} (x-1)^k}{k}. \end{align}</math> This is the [[Taylor series]] for <math>\ln x</math> around 1. A change of variables yields the [[Mercator series]]: <math display="block">\ln(1+x)=\sum_{k=1}^\infty \frac{(-1)^{k-1}}{k} x^k = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots,</math> valid for <math>|x| \leq 1</math> and <math>x\ne -1.</math> [[Leonhard Euler]],<ref>[[Leonhard Euler]], Introductio in Analysin Infinitorum. Tomus Primus. Bousquet, Lausanne 1748. Exemplum 1, p. 228; quoque in: Opera Omnia, Series Prima, Opera Mathematica, Volumen Octavum, Teubner 1922</ref> disregarding <math>x\ne -1</math>, nevertheless applied this series to <math>x=-1</math> to show that the [[harmonic series (mathematics)|harmonic series]] equals the natural logarithm of <math>\frac{1}{1-1}</math>; that is, the logarithm of infinity. Nowadays, more formally, one can prove that the harmonic series truncated at {{mvar|N}} is close to the logarithm of {{mvar|N}}, when {{mvar|N}} is large, with the difference converging to the [[Euler–Mascheroni constant]]. The figure is a [[Graph of a function|graph]] of {{math|ln(1 + ''x'')}} and some of its [[Taylor polynomial]]s around 0. These approximations converge to the function only in the region {{math|−1 < ''x'' ≤ 1}}; outside this region, the higher-degree Taylor polynomials devolve to ''worse'' approximations for the function. A useful special case for positive integers {{mvar|n}}, taking <math>x = \tfrac{1}{n}</math>, is: <math display="block"> \ln \left(\frac{n + 1}{n}\right) = \sum_{k=1}^\infty \frac{(-1)^{k-1}}{k n^k} = \frac{1}{n} - \frac{1}{2 n^2} + \frac{1}{3 n^3} - \frac{1}{4 n^4} + \cdots</math> If <math>\operatorname{Re}(x) \ge 1/2,</math> then <math display="block">\begin{align} \ln (x) &= - \ln \left(\frac{1}{x}\right) = - \sum_{k=1}^\infty \frac{(-1)^{k-1} (\frac{1}{x} - 1)^k}{k} = \sum_{k=1}^\infty \frac{(x - 1)^k}{k x^k} \\ &= \frac{x - 1}{x} + \frac{(x - 1)^2}{2 x^2} + \frac{(x - 1)^3}{3 x^3} + \frac{(x - 1)^4}{4 x^4} + \cdots \end{align}</math> Now, taking <math>x=\tfrac{n+1}{n}</math> for positive integers {{mvar|n}}, we get: <math display="block"> \ln \left(\frac{n + 1}{n}\right) = \sum_{k=1}^\infty \frac{1}{k (n + 1)^k} = \frac{1}{n + 1} + \frac{1}{2 (n + 1)^2} + \frac{1}{3 (n + 1)^3} + \frac{1}{4 (n + 1)^4} + \cdots</math> If <math>\operatorname{Re}(x) \ge 0 \text{ and } x \neq 0,</math> then <math display="block"> \ln (x) = \ln \left(\frac{2x}{2}\right) = \ln\left(\frac{1 + \frac{x - 1}{x + 1}}{1 - \frac{x - 1}{x + 1}}\right) = \ln \left(1 + \frac{x - 1}{x + 1}\right) - \ln \left(1 - \frac{x - 1}{x + 1}\right). </math> Since <math display="block">\begin{align} \ln(1+y) - \ln(1-y)&= \sum^\infty_{i=1}\frac{1}{i}\left((-1)^{i-1}y^i - (-1)^{i-1}(-y)^i\right) = \sum^\infty_{i=1}\frac{y^i}{i}\left((-1)^{i-1} +1\right) \\ &= y\sum^\infty_{i=1}\frac{y^{i-1}}{i}\left((-1)^{i-1} +1\right)\overset{i-1\to 2k}{=}\; 2y\sum^\infty_{k=0}\frac{y^{2k}}{2k+1}, \end{align}</math> we arrive at <math display="block">\begin{align} \ln (x) &= \frac{2(x - 1)}{x + 1} \sum_{k = 0}^\infty \frac{1}{2k + 1} {\left(\frac{(x - 1)^2}{(x + 1)^2}\right)}^k \\ &= \frac{2(x - 1)}{x + 1} \left( \frac{1}{1} + \frac{1}{3} \frac{(x - 1)^2}{(x + 1)^2} + \frac{1}{5} {\left(\frac{(x - 1)^2}{(x + 1)^2}\right)}^2 + \cdots \right) . \end{align}</math> Using the substitution <math>x=\tfrac{n+1}{n}</math> again for positive integers {{mvar|n}}, we get: <math display="block">\begin{align} \ln \left(\frac{n + 1}{n}\right) &= \frac{2}{2n + 1} \sum_{k=0}^\infty \frac{1}{(2k + 1) ((2n + 1)^2)^k}\\ &= 2 \left(\frac{1}{2n + 1} + \frac{1}{3 (2n + 1)^3} + \frac{1}{5 (2n + 1)^5} + \cdots \right). \end{align}</math> This is, by far, the fastest converging of the series described here. The natural logarithm can also be expressed as an infinite product:<ref>{{cite web |last1=RUFFA |first1=Anthony |title=A PROCEDURE FOR GENERATING INFINITE SERIES IDENTITIES |url=https://www.emis.de/journals/HOA/IJMMS/2004/65-683653.pdf |website=International Journal of Mathematics and Mathematical Sciences |access-date=27 February 2022}} (Page 3654, equation 2.6)</ref> <math display="block">\ln(x)=(x-1) \prod_{k=1}^\infty \left ( \frac{2}{1+\sqrt[2^k]{x}} \right )</math> Two examples might be: <math display="block">\ln(2)=\left ( \frac{2}{1+\sqrt{2}} \right )\left ( \frac{2}{1+\sqrt[4]{2}} \right )\left ( \frac{2}{1+\sqrt[8]{2}} \right )\left ( \frac{2}{1+\sqrt[16]{2}} \right )...</math> <math display="block">\pi=(2i+2)\left ( \frac{2}{1+\sqrt{i}} \right )\left ( \frac{2}{1+\sqrt[4]{i}} \right )\left ( \frac{2}{1+\sqrt[8]{i}} \right )\left ( \frac{2}{1+\sqrt[16]{i}} \right )...</math> From this identity, we can easily get that: <math display="block">\frac{1}{\ln(x)}=\frac{x}{x-1}-\sum_{k=1}^\infty\frac{2^{-k}x^{2^{-k}}}{1+x^{2^{-k}}}</math> For example: <math display="block">\frac{1}{\ln(2)} = 2-\frac{\sqrt{2}}{2+2\sqrt{2}}-\frac{\sqrt[4]{2}}{4+4\sqrt[4]{2}}-\frac{\sqrt[8]{2}}{8+8\sqrt[8]{2}} \cdots</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Natural logarithm
(section)
Add topic