Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
N-sphere
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Spherical volume and area elements=== The arc length element is<math display="block">d s^2=d r^2+\sum_{k=1}^{n-1} r^2\left(\prod_{m=1}^{k-1} \sin ^2\left(\varphi_m\right)\right) d \varphi_k^2</math>To express the [[volume element]] of {{tmath|n}}-dimensional Euclidean space in terms of spherical coordinates, let {{tmath|s_k {{=}} \sin \varphi_k}} and {{tmath|c_k {{=}} \cos \varphi_k}} for concision, then observe that the [[Jacobian matrix and determinant|Jacobian matrix]] of the transformation is: :<math> J_n = \begin{pmatrix} c_1 &-rs_1 &0 &0 &\cdots &0 \\ s_1c_2 &rc_1c_2 &-rs_1s_2 &0 &\cdots &0 \\ \vdots &\vdots & \vdots & &\ddots &\vdots \\ & & & & &0 \\ s_1\cdots s_{n-2}c_{n-1} &\cdots &\cdots & & &-rs_1\cdots s_{n-2}s_{n-1} \\ s_{1}\cdots s_{n-2}s_{n-1} &rc_1\cdots s_{n-1} &\cdots & & &\phantom{-}rs_1\cdots s_{n-2}c_{n-1} \end{pmatrix}. </math> The determinant of this matrix can be calculated by induction. When {{tmath|n {{=}} 2}}, a straightforward computation shows that the determinant is {{tmath|r}}. For larger {{tmath|n}}, observe that {{tmath|J_n}} can be constructed from {{tmath|J_{n-1} }} as follows. Except in column {{tmath|n}}, rows {{tmath|n-1}} and {{tmath|n}} of {{tmath|J_n}} are the same as row {{tmath|n-1}} of {{tmath|J_{n-1} }}, but multiplied by an extra factor of {{tmath|\cos \varphi_{n-1} }} in row {{tmath|n-1}} and an extra factor of {{tmath|\sin \varphi_{n-1} }} in row {{tmath|n}}. In column {{tmath|n}}, rows {{tmath|n-1}} and {{tmath|n}} of {{tmath|J_n}} are the same as column {{tmath|n-1}} of row {{tmath|n-1}} of {{tmath|J_{n-1} }}, but multiplied by extra factors of {{tmath|\sin \varphi_{n-1} }} in row {{tmath|n-1}} and {{tmath|\cos \varphi_{n-1} }} in row {{tmath|n}}, respectively. The determinant of {{tmath|J_n}} can be calculated by [[Laplace expansion]] in the final column. By the recursive description of {{tmath|J_n}}, the submatrix formed by deleting the entry at {{tmath|(n-1, n)}} and its row and column almost equals {{tmath|J_{n-1} }}, except that its last row is multiplied by {{tmath|\sin \varphi_{n-1} }}. Similarly, the submatrix formed by deleting the entry at {{tmath|(n, n)}} and its row and column almost equals {{tmath|J_{n-1} }}, except that its last row is multiplied by {{tmath|\cos \varphi_{n-1} }}. Therefore the determinant of {{tmath|J_n}} is :<math>\begin{align} |J_n| &= (-1)^{(n-1)+n}(-rs_1 \dotsm s_{n-2}s_{n-1})(s_{n-1}|J_{n-1}|) \\ &\qquad {}+ (-1)^{n+n}(rs_1 \dotsm s_{n-2}c_{n-1})(c_{n-1}|J_{n-1}|) \\ &= (rs_1 \dotsm s_{n-2}|J_{n-1}|(s_{n-1}^2 + c_{n-1}^2) \\ &= (rs_1 \dotsm s_{n-2})|J_{n-1}|. \end{align}</math> Induction then gives a [[closed-form expression]] for the volume element in spherical coordinates :<math>\begin{align} d^nV &= \left|\det\frac{\partial (x_i)}{\partial\left(r,\varphi_j\right)}\right| dr\,d\varphi_1 \, d\varphi_2\cdots d\varphi_{n-1} \\ &= r^{n-1}\sin^{n-2}(\varphi_1)\sin^{n-3}(\varphi_2)\cdots \sin(\varphi_{n-2})\, dr\,d\varphi_1 \, d\varphi_2\cdots d\varphi_{n-1}. \end{align}</math> The formula for the volume of the {{tmath|n}}-ball can be derived from this by integration. Similarly the surface area element of the {{tmath|(n-1)}}-sphere of radius {{tmath|r}}, which generalizes the [[area element]] of the {{tmath|2}}-sphere, is given by : <math>d_{S^{n-1}}V = R^{n-1}\sin^{n-2}(\varphi_1)\sin^{n-3}(\varphi_2)\cdots \sin(\varphi_{n-2})\, d\varphi_1 \, d\varphi_2\cdots d\varphi_{n-1}.</math> The natural choice of an orthogonal basis over the angular coordinates is a product of [[Gegenbauer polynomial|ultraspherical polynomials]], : <math>\begin{align} & {} \quad \int_0^\pi \sin^{n-j-1}\left(\varphi_j\right) C_s^{\left(\frac{n-j-1}{2}\right)}\cos \left(\varphi_j \right)C_{s'}^{\left(\frac{n-j-1}{2}\right)}\cos \left(\varphi_j\right) \, d\varphi_j \\[6pt] & = \frac{2^{3-n+j}\pi \Gamma(s+n-j-1)}{s!(2s+n-j-1)\Gamma^2\left(\frac{n-j-1}{2}\right)}\delta_{s,s'} \end{align}</math> for {{tmath|j {{=}} 1, 2, \ldots, n-2}}, and the {{tmath|e^{is\varphi_j} }} for the angle {{tmath|j {{=}} n-1}} in concordance with the [[spherical harmonics]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
N-sphere
(section)
Add topic