Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Mescaline
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Pharmacodynamics=== {| class="wikitable floatright" style="font-size:small;" |+ {{Nowrap|Mescaline activities}} |- ! [[Biological target|Target]] !! Affinity (K<sub>i</sub>, nM) |- | [[5-HT1A receptor|5-HT<sub>1A</sub>]] || 1,841–4,600 |- | [[5-HT1B receptor|5-HT<sub>1B</sub>]] || >10,000 |- | [[5-HT1D receptor|5-HT<sub>1D</sub>]] || >10,000 |- | [[5-HT1E receptor|5-HT<sub>1E</sub>]] || 5,205 |- | [[5-HT1F receptor|5-HT<sub>1F</sub>]] || {{Abbr|ND|No data}} |- | [[5-HT2A receptor|5-HT<sub>2A</sub>]] || 550–17,400 (K<sub>i</sub>)<br />88–30,200 ({{Abbrlink|EC<sub>50</sub>|half-maximal effective concentration}})<br />33–107% ({{Abbrlink|E<sub>max</sub>|maximal efficacy}}) |- | [[5-HT2B receptor|5-HT<sub>2B</sub>]] || 793–800 (K<sub>i</sub>)<br />1,100–>20,000 ({{Abbr|EC<sub>50</sub>|half-maximal effective concentration}})<br />91% ({{Abbr|E<sub>max</sub>|maximal efficacy}}) |- | [[5-HT2C receptor|5-HT<sub>2C</sub>]] || 300–17,000<br />20–19,500 ({{Abbr|EC<sub>50</sub>|half-maximal effective concentration}})<br />22–109% ({{Abbr|E<sub>max</sub>|maximal efficacy}}) |- | [[5-HT3 receptor|5-HT<sub>3</sub>]] || >10,000 |- | [[5-HT4 receptor|5-HT<sub>4</sub>]] || {{Abbr|ND|No data}} |- | [[5-HT5A receptor|5-HT<sub>5A</sub>]] || >10,000 |- | [[5-HT6 receptor|5-HT<sub>6</sub>]] || >10,000 |- | [[5-HT7 receptor|5-HT<sub>7</sub>]] || >10,000 |- | [[α1A-adrenergic receptor|α<sub>1A</sub>]] || >15,000 |- | [[α1B-adrenergic receptor|α<sub>1B</sub>]] || >10,000 |- | [[α1D-adrenergic receptor|α<sub>1D</sub>]] || {{Abbr|ND|No data}} |- | [[α2A-adrenergic receptor|α<sub>2A</sub>]] || 1,400–8,930 |- | [[α2B-adrenergic receptor|α<sub>2B</sub>]] || >10,000 |- | [[α2C-adrenergic receptor|α<sub>2C</sub>]] || 745 |- | [[β1-adrenergic receptor|β<sub>1</sub>]]–[[β2-adrenergic receptor|β<sub>2</sub>]] || >10,000 |- | [[D1 receptor|D<sub>1</sub>]] || >10,000 |- | [[D2 receptor|D<sub>2</sub>]] || >10,000 |- | [[D3 receptor|D<sub>3</sub>]] || >17,000 |- | [[D4 receptor|D<sub>4</sub>]] || >10,000 |- | [[D5 receptor|D<sub>5</sub>]] || >10,000 |- | [[H1 receptor|H<sub>1</sub>]]–[[H4 receptor|H<sub>4</sub>]] || >10,000 |- | [[Muscarinic acetylcholine M1 receptor|M<sub>1</sub>]]–[[Muscarinic acetylcholine M5 receptor|M<sub>5</sub>]] || >10,000 |- | [[Trace amine-associated receptor 1|TAAR<sub>1</sub>]] || 3,300 (K<sub>i</sub>) (rat)<br />11,000 (K<sub>i</sub>) (mouse)<br />3,700–4,800 ({{Abbr|EC<sub>50</sub>|half-maximal effective concentration}}) (rodent)<br />>10,000 ({{Abbr|EC<sub>50</sub>|half-maximal effective concentration}}) (human) |- | [[Imidazoline I1 receptor|I<sub>1</sub>]] || 2,678 |- | [[Sigma-1 receptor|σ<sub>1</sub>]]–[[Sigma-2 receptor|σ<sub>2</sub>]] || >10,000 |- | {{Abbrlink|SERT|Serotonin transporter}} || >30,000 (K<sub>i</sub>)<br />367,000 ({{Abbrlink|IC<sub>50</sub>|half-maximal inhibitory concentration}}) |- | {{Abbrlink|NET|Norepinephrine transporter}} || >30,000 (K<sub>i</sub>)<br />>900,000 ({{Abbr|IC<sub>50</sub>|half-maximal inhibitory concentration}}) |- | {{Abbrlink|DAT|Dopamine transporter}} || >30,000 (K<sub>i</sub>)<br />841,000 ({{Abbr|IC<sub>50</sub>|half-maximal inhibitory concentration}}) |- class="sortbottom" | colspan="2" style="width: 1px; background-color:#eaecf0; text-align: center;" | '''Notes:''' The smaller the value, the more avidly the drug binds to the site. All proteins are human unless otherwise specified. '''Refs:''' <ref name="PDSPKiDatabase">{{cite web | title=PDSP Database | website=UNC | url=https://pdsp.unc.edu/databases/pdsp.php?testFreeRadio=testFreeRadio&testLigand=mescaline&kiAllRadio=all&doQuery=Submit+Query | language=zu | access-date=5 November 2024}}</ref><ref name="BindingDB">{{cite web | vauthors = Liu T | title=BindingDB BDBM50059891 1-amino-2-(3,4,5-trimethoxyphenyl)ethane::2-(3,4,5-trimethoxyphenyl)ethanamine::3,4,5-trimethoxybenzeneethanamine::3,4,5-trimethoxyphenethylamine::3,4,5-trimethoxyphenylethylamine::CHEMBL26687::Mescalin::Meskalin::TMPEA::US20240166618, Compound Mescaline::mescalina::mescaline::mezcalina | website=BindingDB | url=https://www.bindingdb.org/rwd/bind/chemsearch/marvin/MolStructure.jsp?monomerid=50059891 | access-date=5 November 2024}}</ref><ref name="HolzeSinghLiechti2024" /><ref name="VamvakopoulouNarineCampbell2023" /><br /><ref name="Ray2010">{{cite journal | vauthors = Ray TS | title = Psychedelics and the human receptorome | journal = PLOS ONE | volume = 5 | issue = 2 | pages = e9019 | date = February 2010 | pmid = 20126400 | pmc = 2814854 | doi = 10.1371/journal.pone.0009019 | doi-access = free | bibcode = 2010PLoSO...5.9019R | url = }}</ref><ref name="RickliLuethiReinisch2015">{{cite journal | vauthors = Rickli A, Luethi D, Reinisch J, Buchy D, Hoener MC, Liechti ME | title = Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs) | journal = Neuropharmacology | volume = 99 | issue = | pages = 546–553 | date = December 2015 | pmid = 26318099 | doi = 10.1016/j.neuropharm.2015.08.034 | url = http://edoc.unibas.ch/56163/1/20170921163006_59c3cceeb8e5d.pdf}}</ref><ref name="RickliMoningHoener2016">{{cite journal |vauthors=Rickli A, Moning OD, Hoener MC, Liechti ME |date=August 2016 |title=Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens |url=http://edoc.unibas.ch/53326/1/20170117174852_587e4af45b658.pdf |journal=European Neuropsychopharmacology |volume=26 |issue=8 |pages=1327–1337 |doi=10.1016/j.euroneuro.2016.05.001 |pmid=27216487 |s2cid=6685927}}</ref><ref name="WallachCaoCalkins2023">{{cite journal | vauthors = Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, Hennessey JJ, Bock HA, Anderson EI, Sherwood AM, Morris H, de Klein R, Klein AK, Cuccurazzu B, Gamrat J, Fannana T, Zauhar R, Halberstadt AL, McCorvy JD | title = Identification of 5-HT2A receptor signaling pathways associated with psychedelic potential | journal = Nat Commun | volume = 14 | issue = 1 | pages = 8221 | date = December 2023 | pmid = 38102107 | pmc = 10724237 | doi = 10.1038/s41467-023-44016-1 }}</ref><ref name="MoyaBergGutiérrez-Hernandez2007">{{cite journal | vauthors = Moya PR, Berg KA, Gutiérrez-Hernandez MA, Sáez-Briones P, Reyes-Parada M, Cassels BK, Clarke WP | title = Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors | journal = J Pharmacol Exp Ther | volume = 321 | issue = 3 | pages = 1054–1061 | date = June 2007 | pmid = 17337633 | doi = 10.1124/jpet.106.117507 | url = https://repositorio.uchile.cl/bitstream/handle/2250/119461/Moya_Pablo_R.pdf}}</ref><ref name="GainetdinovHoenerBerry2018">{{cite journal | vauthors = Gainetdinov RR, Hoener MC, Berry MD | title = Trace Amines and Their Receptors | journal = Pharmacol Rev | volume = 70 | issue = 3 | pages = 549–620 | date = July 2018 | pmid = 29941461 | doi = 10.1124/pr.117.015305 | url = | doi-access = free }}</ref><ref name="SimmlerBuchyChaboz2016">{{cite journal | vauthors = Simmler LD, Buchy D, Chaboz S, Hoener MC, Liechti ME | title = In Vitro Characterization of Psychoactive Substances at Rat, Mouse, and Human Trace Amine-Associated Receptor 1 | journal = J Pharmacol Exp Ther | volume = 357 | issue = 1 | pages = 134–144 | date = April 2016 | pmid = 26791601 | doi = 10.1124/jpet.115.229765 | url = https://d1wqtxts1xzle7.cloudfront.net/74120533/eae6c6e62565b82d46b4d111bbea0f77b9c2-libre.pdf?1635931703=&response-content-disposition=inline%3B+filename%3DIn_Vitro_Characterization_of_Psychoactiv.pdf&Expires=1746838268&Signature=Sy4fJ90yUhxs68314NxYsW5PAaNrBGePRu35WRR4PIF-3YC7Z~sLdnCn5wfqqbLg9bDEGdt~oW55ugMP3D3jgA0BoRI~~GOb0NQOwrtfUEQK1PQs1uuN9qg5Y1ct8z5NsABm44RgtukkwRMdU6fO7OlfIsQ68hOiFk129Ll7UYqldxD2f1xhE2fTTfsxSpb8cMCJzHn7-ItqLdwnAUPFK7WggDIjmY1kCnaHLwIxMwdJCAq8L6DYzSTg7pZkbR8qlou~GXbTPQt~gYpyZTJp5hgW-7V6K5wLlQ7Z2xE7B0f9wEfuc1W1QNafg125Tr-vvAe4LEGKXV58bnn1bpfWKw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA| archive-url = https://web.archive.org/web/20250509235235/https://d1wqtxts1xzle7.cloudfront.net/74120533/eae6c6e62565b82d46b4d111bbea0f77b9c2-libre.pdf?1635931703=&response-content-disposition=inline%3B+filename%3DIn_Vitro_Characterization_of_Psychoactiv.pdf&Expires=1746838268&Signature=Sy4fJ90yUhxs68314NxYsW5PAaNrBGePRu35WRR4PIF-3YC7Z~sLdnCn5wfqqbLg9bDEGdt~oW55ugMP3D3jgA0BoRI~~GOb0NQOwrtfUEQK1PQs1uuN9qg5Y1ct8z5NsABm44RgtukkwRMdU6fO7OlfIsQ68hOiFk129Ll7UYqldxD2f1xhE2fTTfsxSpb8cMCJzHn7-ItqLdwnAUPFK7WggDIjmY1kCnaHLwIxMwdJCAq8L6DYzSTg7pZkbR8qlou~GXbTPQt~gYpyZTJp5hgW-7V6K5wLlQ7Z2xE7B0f9wEfuc1W1QNafg125Tr-vvAe4LEGKXV58bnn1bpfWKw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA | archive-date = 9 May 2025 }}</ref> |} In humans, mescaline acts similarly to other psychedelic agents.<ref name="pmid14761703">{{cite journal |vauthors=Nichols DE |date=February 2004 |title=Hallucinogens |journal=Pharmacology & Therapeutics |volume=101 |issue=2 |pages=131–181 |doi=10.1016/j.pharmthera.2003.11.002 |pmid=14761703}}</ref> It acts as an agonist,<ref name="pmid2707301">{{cite journal |vauthors=Appel JB, Callahan PM |date=January 1989 |title=Involvement of 5-HT receptor subtypes in the discriminative stimulus properties of mescaline |journal=European Journal of Pharmacology |volume=159 |issue=1 |pages=41–46 |doi=10.1016/0014-2999(89)90041-1 |pmid=2707301}}</ref> binding to and activating the [[serotonin]] [[5-HT2A receptor|5-HT<sub>2A</sub> receptor]].<ref name="pmid9301661">{{cite journal |vauthors=Monte AP, Waldman SR, Marona-Lewicka D, Wainscott DB, Nelson DL, Sanders-Bush E, Nichols DE |date=September 1997 |title=Dihydrobenzofuran analogues of hallucinogens. 4. Mescaline derivatives |journal=Journal of Medicinal Chemistry |volume=40 |issue=19 |pages=2997–3008 |citeseerx=10.1.1.690.9370 |doi=10.1021/jm970219x |pmid=9301661}}</ref><ref name="KlaiberSchmidBecker2024">{{cite journal | vauthors = Klaiber A, Schmid Y, Becker AM, Straumann I, Erne L, Jelusic A, Thomann J, Luethi D, Liechti ME | title = Acute dose-dependent effects of mescaline in a double-blind placebo-controlled study in healthy subjects | journal = Translational Psychiatry | volume = 14 | issue = 1 | pages = 395 | date = September 2024 | pmid = 39349427 | doi = 10.1038/s41398-024-03116-2 | pmc = 11442856 }}</ref> Its {{Abbrlink|EC<sub>50</sub>|half-maximal effective concentration}} at the serotonin 5-HT<sub>2A</sub> receptor is approximately 10,000{{nbsp}}nM and at the serotonin 5-HT<sub>2B</sub> receptor is greater than 20,000{{nbsp}}nM.<ref name="VamvakopoulouNarineCampbell2023" /> How activating the 5-HT<sub>2A</sub> receptor leads to psychedelic effects is still unknown, but it is likely that somehow it involves excitation of neurons in the [[prefrontal cortex]].<ref name="pmid17535909">{{cite journal |vauthors=Béïque JC, Imad M, Mladenovic L, Gingrich JA, Andrade R |date=June 2007 |title=Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=104 |issue=23 |pages=9870–9875 |bibcode=2007PNAS..104.9870B |doi=10.1073/pnas.0700436104 |pmc=1887564 |pmid=17535909 |doi-access=free}}</ref> In addition to the serotonin 5-HT<sub>2A</sub> and 5-HT<sub>2B</sub> receptors, mescaline is also known to bind to the serotonin [[5-HT2C receptor|5-HT<sub>2C</sub> receptor]] and a number of other [[biological target|target]]s.<ref name="VamvakopoulouNarineCampbell2023" /><ref name="RickliMoningHoener2016" /><ref name="Ray2010" /><ref>{{Cite web |date=27 March 2009 |title=Neuropharmacology of Hallucinogens |url=http://www.erowid.org/psychoactives/pharmacology/pharmacology_article1.shtml |access-date=7 September 2011 |publisher=Erowid.org}}</ref> Mescaline lacks affinity for the [[monoamine transporter]]s, including the [[serotonin transporter]] (SERT), [[norepinephrine transporter]] (NET), and [[dopamine transporter]] (DAT) (K<sub>i</sub> > 30,000{{nbsp}}nM).<ref name="VamvakopoulouNarineCampbell2023" /> However, it has been found to increase levels of the major serotonin [[metabolite]] [[5-hydroxyindoleacetic acid]] (5-HIAA) at high doses in rodents.<ref name="VamvakopoulouNarineCampbell2023" /><ref name="Doesburg-vanKleffensZimmermann-KlemdGründemann2023" /><ref name="Dinis-OliveiraPereiradaSilva2019">{{cite journal | vauthors = Dinis-Oliveira RJ, Pereira CL, da Silva DD | title = Pharmacokinetic and Pharmacodynamic Aspects of Peyote and Mescaline: Clinical and Forensic Repercussions | journal = Curr Mol Pharmacol | volume = 12 | issue = 3 | pages = 184–194 | date = 2019 | pmid = 30318013 | pmc = 6864602 | doi = 10.2174/1874467211666181010154139 | url = }}</ref><ref name="FreedmanGottliebLovell1970">{{cite journal | vauthors = Freedman DX, Gottlieb R, Lovell RA | title=Psychotomimetic drugs and brain 5-hydroxytryptamine metabolism | journal=Biochemical Pharmacology | publisher=Elsevier BV | volume=19 | year=1970 | issn=0006-2952 | doi=10.1016/0006-2952(70)90378-3 | pages=1181–1188}}</ref> This finding suggests that mescaline might [[serotonin reuptake inhibitor|inhibit the reuptake]] and/or [[serotonin releasing agent|induce the release]] of serotonin at such doses.<ref name="VamvakopoulouNarineCampbell2023" /><ref name="Doesburg-vanKleffensZimmermann-KlemdGründemann2023" /><ref name="TilsonSparber1972">{{cite journal | vauthors = Tilson HA, Sparber SB | title = Studies on the concurrent behavioral and neurochemical effects of psychoactive drugs using the push-pull cannula | journal = J Pharmacol Exp Ther | volume = 181 | issue = 3 | pages = 387–398 | date = June 1972 | pmid = 5033008 | doi = 10.1016/S0022-3565(25)29220-5| url = https://jpet.aspetjournals.org/content/181/3/387.long}}</ref> In any case, this possibility has not yet been further assessed or demonstrated.<ref name="VamvakopoulouNarineCampbell2023" /> Besides serotonin, mescaline might also weakly [[dopamine releasing agent|induce the release of dopamine]], but this is probably of modest significance, if it occurs.<ref name="Doesburg-vanKleffensZimmermann-KlemdGründemann2023" /><ref name="Dinis-OliveiraPereiradaSilva2019" /><ref name="TrulsonCrispHenderson1983">{{cite journal | vauthors = Trulson ME, Crisp T, Henderson LJ | title = Mescaline elicits behavioral effects in cats by an action at both serotonin and dopamine receptors | journal = Eur J Pharmacol | volume = 96 | issue = 1–2 | pages = 151–154 | date = December 1983 | pmid = 6581976 | doi = 10.1016/0014-2999(83)90544-7 | url = }}</ref> In accordance, there is no evidence of the drug showing [[drug addiction|addiction]] or [[drug dependence|dependence]].<ref name="Dinis-OliveiraPereiradaSilva2019" /><ref name="Doesburg-vanKleffensZimmermann-KlemdGründemann2023" /> Mescaline appears to be inactive in terms of [[norepinephrine releasing agent|norepinephrine release induction]] and indirect [[sympathomimetic]] activity.<ref name="NeumannAzatsianHühm2023">{{cite journal | vauthors = Neumann J, Azatsian K, Höhm C, Hofmann B, Gergs U | title = Cardiac effects of ephedrine, norephedrine, mescaline, and 3,4-methylenedioxymethamphetamine (MDMA) in mouse and human atrial preparations | journal = Naunyn Schmiedebergs Arch Pharmacol | volume = 396 | issue = 2 | pages = 275–287 | date = February 2023 | pmid = 36319858 | pmc = 9831963 | doi = 10.1007/s00210-022-02315-2 | url = }}</ref> Other psychedelic phenethylamines, including the closely related [[2C (psychedelics)|2C]], [[DOx]], and [[trimethoxyamphetamines|TMA]] drugs, are inactive as [[monoamine releasing agent]]s and [[monoamine reuptake inhibitor|reuptake inhibitor]]s.<ref name="NagaiNonakaKamimura2007">{{cite journal | vauthors = Nagai F, Nonaka R, Satoh Hisashi Kamimura K | title = The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain | journal = European Journal of Pharmacology | volume = 559 | issue = 2–3 | pages = 132–137 | date = March 2007 | pmid = 17223101 | doi = 10.1016/j.ejphar.2006.11.075 }}</ref><ref name="EshlemanForsterWolfrum2014">{{cite journal | vauthors = Eshleman AJ, Forster MJ, Wolfrum KM, Johnson RA, Janowsky A, Gatch MB | title = Behavioral and neurochemical pharmacology of six psychoactive substituted phenethylamines: mouse locomotion, rat drug discrimination and in vitro receptor and transporter binding and function | journal = Psychopharmacology (Berl) | volume = 231 | issue = 5 | pages = 875–888 | date = March 2014 | pmid = 24142203 | pmc = 3945162 | doi = 10.1007/s00213-013-3303-6 | url = }}</ref> However, an exception is [[trimethoxyamphetamine]] (TMA), the amphetamine [[structural analog|analogue]] of mescaline, which is a very low-[[potency (pharmacology)|potency]] [[serotonin releasing agent]] ({{Abbrlink|EC<sub>50</sub>|half-maximal effective concentration}} = 16,000{{nbsp}}nM).<ref name="NagaiNonakaKamimura2007" /> The possible monoamine-releasing effects of mescaline would likely be related to its [[structural analog|structural similarity]] to [[substituted amphetamine]]s and related compounds.<ref name="Dinis-OliveiraPereiradaSilva2019" /><ref name="Doesburg-vanKleffensZimmermann-KlemdGründemann2023" /> Mescaline is a relatively low-potency psychedelic, with active doses in the hundreds of milligrams and micromolar affinities for the serotonin 5-HT<sub>2A</sub> receptor.<ref name="CasselsSáez-Briones2018" /><ref name="VamvakopoulouNarineCampbell2023" /> For comparison, [[psilocybin]] is approximately 20-fold more potent (doses in the tens of milligrams) and [[lysergic acid diethylamide]] (LSD) is approximately 2,000-fold more potent (doses in the tens to hundreds of micrograms).<ref name="VamvakopoulouNarineCampbell2023" /> There have been efforts to develop more potent [[structural analogue|analogue]]s of mescaline.<ref name="CasselsSáez-Briones2018" /> Difluoro{{shy}}mescaline and [[Trifluoromescaline|trifluoro{{shy}}mescaline]] are more potent than mescaline, as is its amphetamine [[homologous series|homologue]] TMA.<ref>{{cite journal |vauthors=Trachsel D |year=2012 |title=Fluorine in psychedelic phenethylamines |url=http://bitnest.ca/external.php?id=%257DbxUgXXCNAUj%257E%257E%2507 |url-status=dead |journal=Drug Testing and Analysis |volume=4 |issue=7–8 |pages=577–590 |doi=10.1002/dta.413 |pmid=22374819 |archive-url=https://web.archive.org/web/20130603150127/http://bitnest.ca/external.php?id=%257DbxUgXXCNAUj%257E%257E%2507 |archive-date=2013-06-03}}</ref><ref>{{Cite web |title=#157 TMA - 3,4,5-TRIMETHOXYAMPHETAMINE |url=https://www.erowid.org/library/books_online/pihkal/pihkal157.shtml |access-date=9 January 2013 |work=PiHKAL: A Chemical Love Story |publisher=Erowid.org |vauthors=Shulgin A}}</ref> [[Escaline]] and [[proscaline]] are also both more potent than mescaline, showing the importance of the 4-position substituent with regard to receptor binding.<ref name="pmid3952123">{{cite journal |vauthors=Nichols DE |date=February 1986 |title=Studies of the relationship between molecular structure and hallucinogenic activity |journal=Pharmacology, Biochemistry, and Behavior |volume=24 |issue=2 |pages=335–340 |doi=10.1016/0091-3057(86)90362-x |pmid=3952123 |s2cid=30796368}}</ref> [[Drug tolerance|Tolerance]] to mescaline builds with repeated usage, lasting for a few days. The drug causes [[cross-tolerance]] with other [[serotonergic psychedelics]] such as [[lysergic acid diethylamide|LSD]] and [[psilocybin]].<ref>{{Cite web |url=http://www.erowid.org/archive/rhodium/chemistry/psychedelicchemistry/chapter1.html |title=Psychedelics and Society | vauthors = Smith MV |publisher=Erowid.org |access-date=6 April 2012 }}</ref> The [[cryo-EM]] [[protein–ligand complex|structure]]s of the serotonin 5-HT<sub>2A</sub> receptor with mescaline, as well as with various other psychedelics and serotonin 5-HT<sub>2A</sub> receptor agonists, have been solved and published by [[Bryan L. Roth]] and colleagues.<ref name="GumpperJainKim2025">{{cite journal | vauthors = Gumpper RH, Jain MK, Kim K, Sun R, Sun N, Xu Z, DiBerto JF, Krumm BE, Kapolka NJ, Kaniskan HÜ, Nichols DE, Jin J, Fay JF, Roth BL | title = The structural diversity of psychedelic drug actions revealed | journal = Nature Communications | volume = 16 | issue = 1 | pages = 2734 | date = March 2025 | pmid = 40108183 | doi = 10.1038/s41467-025-57956-7 | pmc = 11923220 | bibcode = 2025NatCo..16.2734G }}</ref><ref name="GumpperDiBertoJain2022">{{cite conference | vauthors = Gumpper RH, DiBerto J, Jain M, Kim K, Fay J, Roth BL | title = Structures of Hallucinogenic and Non-Hallucinogenic Analogues of the 5-HT2A Receptor Reveals Molecular Insights into Signaling Bias | conference = University of North Carolina at Chapel Hill Department of Pharmacology Research Retreat September 16th, 2022 – William and Ida Friday Center | date = September 2022 | url = https://www.med.unc.edu/pharm/wp-content/uploads/sites/930/2022/07/COMPLETE-PHARM-RETREAT-PROGRAM-2022-UPDATE.pdf#page=37}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Mescaline
(section)
Add topic