Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Laplace transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties and theorems == The Laplace transform's key property is that it converts [[derivative|differentiation]] and [[integral|integration]] in the time domain into multiplication and division by {{math|''s''}} in the Laplace domain. Thus, the Laplace variable {{math|''s''}} is also known as an ''operator variable'' in the Laplace domain: either the ''derivative operator'' or (for {{math|''s''<sup>β1</sup>)}} the ''integration operator''. Given the functions {{math|''f''(''t'')}} and {{math|''g''(''t'')}}, and their respective Laplace transforms {{math|''F''(''s'')}} and {{math|''G''(''s'')}}, <math display=block>\begin{align} f(t) &= \mathcal{L}^{-1}\{F(s)\},\\ g(t) &= \mathcal{L}^{-1}\{G(s)\}, \end{align}</math> the following table is a list of properties of unilateral Laplace transform:<ref>{{harvnb|Korn|Korn|1967|pp=226–227}}</ref> {| class="wikitable" id="291017_tableid" |+ Properties of the unilateral Laplace transform |- ! scope="col" | Property ! scope="col" | Time domain ! scope="col" | {{math|''s''}} domain ! scope="col" | Comment |- ! scope="row" | [[Linearity]] | <math> a f(t) + b g(t) \ </math> | <math> a F(s) + b G(s) \ </math> | Can be proved using basic rules of integration. |- ! scope="row" | Frequency-domain derivative | <math> t f(t) \ </math> | <math> -F'(s) \ </math> | {{math|''F''β²}} is the first derivative of {{math|''F''}} with respect to {{math|''s''}}. |- ! scope="row" | Frequency-domain general derivative | <math> t^{n} f(t) \ </math> | <math> (-1)^{n} F^{(n)}(s) \ </math> | More general form, {{math|''n''}}th derivative of {{math|''F''(''s'')}}. |- ! scope="row" | [[Derivative]] | <math> f'(t) \ </math> | <math> s F(s) - f(0^{-}) \ </math> | {{math|''f''}} is assumed to be a [[differentiable function]], and its derivative is assumed to be of exponential type. This can then be obtained by integration by parts |- ! scope="row" | Second derivative | <math> f''(t) \ </math> | <math display="inline"> s^2 F(s) - s f(0^{-}) - f'(0^{-}) \ </math> | {{math|''f''}} is assumed twice differentiable and the second derivative to be of exponential type. Follows by applying the Differentiation property to {{math|''f''β²(''t'')}}. |- ! scope="row" | General derivative | <math> f^{(n)}(t) \ </math> | <math> s^n F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0^{-}) \ </math> | {{math|''f''}} is assumed to be {{math|''n''}}-times differentiable, with {{math|''n''}}th derivative of exponential type. Follows by [[mathematical induction]]. |- ! scope="row" | Frequency-domain [[Integral|integration]] | <math> \frac{1}{t}f(t) \ </math> | <math> \int_s^\infty F(\sigma)\, d\sigma \ </math> | This is deduced using the nature of frequency differentiation and conditional convergence. |- ! scope="row" | Time-domain integration | <math> \int_0^t f(\tau)\, d\tau = (u * f)(t)</math> | <math> {1 \over s} F(s) </math> | {{math|''u''(''t'')}} is the Heaviside step function and {{math|(''u'' β ''f'')(''t'')}} is the [[convolution]] of {{math|''u''(''t'')}} and {{math|''f''(''t'')}}. |- ! scope="row" | Frequency shifting | <math> e^{at} f(t) </math> | <math> F(s - a) \ </math> | |- ! scope="row" | Time shifting | <math> f(t - a) u(t - a) </math> <math> f(t) u(t - a) \ </math> | <math> e^{-as} F(s) \ </math> <math> e^{-as} \mathcal{L}\{f(t + a)\} </math> | {{math|''a'' > 0}}, {{math|''u''(''t'')}} is the Heaviside step function |- ! scope="row" | Time scaling | <math>f(at)</math> | <math> \frac{1}{a} F \left ({s \over a} \right)</math> | {{math|''a'' > 0}} |- ! scope="row" | [[Multiplication]] | <math>f(t)g(t)</math> | <math> \frac{1}{2\pi i}\lim_{T\to\infty}\int_{c - iT}^{c + iT}F(\sigma)G(s - \sigma)\,d\sigma \ </math> | The integration is done along the vertical line {{math|1=Re(''Ο'') = ''c''}} that lies entirely within the region of convergence of {{math|''F''}}.<ref>{{harvnb|Bracewell|2000|loc=Table 14.1, p. 385}}</ref> |- ! scope="row" | [[Convolution]] | <math> (f * g)(t) = \int_{0}^{t} f(\tau)g(t - \tau)\,d\tau</math> | <math> F(s) \cdot G(s) \ </math> | |- ! scope="row" | [[Circular convolution]] | <math> (f * g)(t) = \int_{0}^T f(\tau)g(t - \tau)\,d\tau</math> | <math> F(s) \cdot G(s) \ </math> | For periodic functions with period {{math|''T''}}. |- ! scope="row" | [[Complex conjugation]] | <math> f^*(t) </math> | <math> F^*(s^*) </math> | |- ! scope="row" | [[Periodic function]] | <math>f(t)</math> | <math>{1 \over 1 - e^{-Ts}} \int_0^T e^{-st} f(t)\,dt </math> | {{math|''f''(''t'')}} is a periodic function of period {{math|''T''}} so that {{math|1=''f''(''t'') = ''f''(''t'' + ''T'')}}, for all {{math|''t'' β₯ 0}}. This is the result of the time shifting property and the [[geometric series]]. |- ! scope="row" | [[Periodic summation]] | <math> f_P(t) = \sum_{n=0}^{\infty} f(t-Tn) </math> <math> f_P(t) = \sum_{n=0}^{\infty} (-1)^n f(t-Tn) </math> | <math> F_P(s) = \frac{1}{1-e^{-Ts}} F(s) </math> <math> F_P(s) = \frac{1}{1+e^{-Ts}} F(s) </math> | |} ; [[Initial value theorem]] :<math>f(0^+)=\lim_{s\to \infty}{sF(s)}.</math> ; [[Final value theorem]] :<math>f(\infty)=\lim_{s\to 0}{sF(s)}</math>, if all [[Pole (complex analysis)|poles]] of <math>sF(s)</math> are in the left half-plane. :The final value theorem is useful because it gives the long-term behaviour without having to perform [[partial fraction]] decompositions (or other difficult algebra). If {{math|''F''(''s'')}} has a pole in the right-hand plane or poles on the imaginary axis (e.g., if <math>f(t) = e^t</math> or <math>f(t) = \sin(t)</math>), then the behaviour of this formula is undefined. === Relation to power series === The Laplace transform can be viewed as a [[continuous function|continuous]] analogue of a [[power series]].<ref>Archived at [https://ghostarchive.org/varchive/youtube/20211211/zvbdoSeGAgI Ghostarchive]{{cbignore}} and the [https://web.archive.org/web/20141220033002/https://www.youtube.com/watch?v=zvbdoSeGAgI&gl=US&hl=en Wayback Machine]{{cbignore}}: {{cite web |last1=Mattuck |first1=Arthur |title=Where the Laplace Transform comes from |website=[[YouTube]] |date=7 November 2008 |url=https://www.youtube.com/watch?v=zvbdoSeGAgI}}{{cbignore}}</ref> If {{math|''a''(''n'')}} is a discrete function of a positive integer {{math|''n''}}, then the power series associated to {{math|''a''(''n'')}} is the series <math display=block>\sum_{n=0}^{\infty} a(n) x^n</math> where {{math|''x''}} is a real variable (see ''[[Z-transform]]''). Replacing summation over {{math|''n''}} with integration over {{math|''t''}}, a continuous version of the power series becomes <math display=block>\int_{0}^{\infty} f(t) x^t\, dt</math> where the discrete function {{math|''a''(''n'')}} is replaced by the continuous one {{math|''f''(''t'')}}. Changing the base of the power from {{math|''x''}} to {{math|''e''}} gives <math display=block>\int_{0}^{\infty} f(t) \left(e^{\ln{x}}\right)^t\, dt</math> For this to converge for, say, all bounded functions {{math|''f''}}, it is necessary to require that {{math|ln ''x'' < 0}}. Making the substitution {{math|1=−''s'' = ln ''x''}} gives just the Laplace transform: <math display=block>\int_{0}^{\infty} f(t) e^{-st}\, dt</math> In other words, the Laplace transform is a continuous analog of a power series, in which the discrete parameter {{math|''n''}} is replaced by the continuous parameter {{math|''t''}}, and {{math|''x''}} is replaced by {{math|''e''<sup>−''s''</sup>}}. === Relation to moments === {{main article|Moment-generating function}} The quantities <math display=block>\mu_n = \int_0^\infty t^nf(t)\, dt</math> are the ''moments'' of the function {{math|''f''}}. If the first {{math|''n''}} moments of {{math|''f''}} converge absolutely, then by repeated [[differentiation under the integral]], <math display=block>(-1)^n(\mathcal L f)^{(n)}(0) = \mu_n .</math> This is of special significance in probability theory, where the moments of a random variable {{math|''X''}} are given by the expectation values <math>\mu_n=\operatorname{E}[X^n]</math>. Then, the relation holds <math display=block>\mu_n = (-1)^n\frac{d^n}{ds^n}\operatorname{E}\left[e^{-sX}\right](0).</math> === Transform of a function's derivative === It is often convenient to use the differentiation property of the Laplace transform to find the transform of a function's derivative. This can be derived from the basic expression for a Laplace transform as follows: <math display=block>\begin{align} \mathcal{L} \left\{f(t)\right\} &= \int_{0^-}^\infty e^{-st} f(t)\, dt \\[6pt] &= \left[\frac{f(t)e^{-st}}{-s} \right]_{0^-}^\infty - \int_{0^-}^\infty \frac{e^{-st}}{-s} f'(t) \, dt\quad \text{(by parts)} \\[6pt] &= \left[-\frac{f(0^-)}{-s}\right] + \frac 1 s \mathcal{L} \left\{f'(t)\right\}, \end{align}</math> yielding <math display=block>\mathcal{L} \{ f'(t) \} = s\cdot\mathcal{L} \{ f(t) \}-f(0^-), </math> and in the bilateral case, <math display=block> \mathcal{L} \{ f'(t) \} = s \int_{-\infty}^\infty e^{-st} f(t)\,dt = s \cdot \mathcal{L} \{ f(t) \}. </math> The general result <math display=block>\mathcal{L} \left\{ f^{(n)}(t) \right\} = s^n \cdot \mathcal{L} \{ f(t) \} - s^{n - 1} f(0^-) - \cdots - f^{(n - 1)}(0^-),</math> where <math>f^{(n)}</math> denotes the {{math|''n''}}th derivative of {{math|''f''}}, can then be established with an inductive argument. === Evaluating integrals over the positive real axis === A useful property of the Laplace transform is the following: <math display=block>\int_0^\infty f(x)g(x)\,dx = \int_0^\infty(\mathcal{L} f)(s)\cdot(\mathcal{L}^{-1}g)(s)\,ds </math> under suitable assumptions on the behaviour of <math>f,g</math> in a right neighbourhood of <math>0</math> and on the decay rate of <math>f,g</math> in a left neighbourhood of <math>\infty</math>. The above formula is a variation of integration by parts, with the operators <math>\frac{d}{dx}</math> and <math>\int \,dx</math> being replaced by <math>\mathcal{L}</math> and <math>\mathcal{L}^{-1}</math>. Let us prove the equivalent formulation: <math display=block>\int_0^\infty(\mathcal{L} f)(x)g(x)\,dx = \int_0^\infty f(s)(\mathcal{L}g)(s)\,ds. </math> By plugging in <math>(\mathcal{L}f)(x)=\int_0^\infty f(s)e^{-sx}\,ds</math> the left-hand side turns into: <math display=block>\int_0^\infty\int_0^\infty f(s)g(x) e^{-sx}\,ds\,dx, </math> but assuming Fubini's theorem holds, by reversing the order of integration we get the wanted right-hand side. This method can be used to compute integrals that would otherwise be difficult to compute using elementary methods of real calculus. For example, <math display=block>\int_0^\infty\frac{\sin x}{x}dx = \int_0^\infty \mathcal{L}(1)(x)\sin x dx = \int_0^\infty 1 \cdot \mathcal{L}(\sin)(x)dx = \int_0^\infty \frac{dx}{x^2 + 1} = \frac{\pi}{2}. </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Laplace transform
(section)
Add topic