Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Laplace operator
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Coordinate expressions == === Two dimensions === The Laplace operator in two dimensions is given by: In '''[[Cartesian coordinates]]''', <math display="block">\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}</math> where {{mvar|x}} and {{mvar|y}} are the standard [[Cartesian coordinates]] of the {{math|''xy''}}-plane. In '''[[polar coordinates]]''', <math display="block">\begin{align} \Delta f &= \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} \\ &= \frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}, \end{align}</math> where {{mvar|r}} represents the radial distance and {{mvar|θ}} the angle. ===Three dimensions=== {{See also|Del in cylindrical and spherical coordinates}} In three dimensions, it is common to work with the Laplacian in a variety of different coordinate systems. In '''[[Cartesian coordinates]]''', <math display="block">\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.</math> In '''[[cylindrical coordinates]]''', <math display="block">\Delta f = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{\partial^2 f}{\partial z^2 },</math> where <math>\rho</math> represents the radial distance, {{math|''φ''}} the azimuth angle and {{math|''z''}} the height. In '''[[spherical coordinates]]''': <math display="block">\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2},</math> or <math display="block">\Delta f = \frac{1}{r} \frac{\partial^2}{\partial r^2} (r f) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2},</math> by expanding the first and second term, these expressions read <math display="block">\Delta f = \frac{\partial^2 f}{\partial r^2} + \frac{2}{r}\frac{\partial f}{\partial r}+\frac{1}{r^2 \sin \theta} \left(\cos \theta \frac{\partial f}{\partial \theta} + \sin \theta \frac{\partial^2 f}{\partial \theta^2} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2},</math> <!---**********PLEASE SEE THE DISCUSSION PAGE BEFORE CHANGING THIS.**********--> where {{math|''φ''}} represents the [[azimuthal angle]] and {{math|''θ''}} the [[zenith angle]] or [[colatitude|co-latitude]]. In particular, the above is equivalent to <math>\Delta f = \frac{\partial^2 f}{\partial r^2} + \frac{2}{r}\frac{\partial f}{\partial r} + \frac{1}{r^2}\Delta_{S^2} f ,</math> where <math>\Delta_{S^2}f</math> is the [[Laplace–Beltrami operator|Laplace-Beltrami operator]] on the unit sphere. <!---**************************************************************--> In general '''[[curvilinear coordinates]]''' ({{math|''ξ''<sup>1</sup>, ''ξ''<sup>2</sup>, ''ξ''<sup>3</sup>}}): <math display="block">\Delta = \nabla \xi^m \cdot \nabla \xi^n \frac{\partial^2}{\partial \xi^m \, \partial \xi^n} + \nabla^2 \xi^m \frac{\partial}{\partial \xi^m } = g^{mn} \left(\frac{\partial^2}{\partial\xi^m \, \partial\xi^n} - \Gamma^{l}_{mn}\frac{\partial}{\partial\xi^l} \right),</math> where [[Einstein summation convention|summation over the repeated indices is implied]], {{math|''g<sup>mn</sup>''}} is the inverse [[metric tensor]] and {{math|Γ''<sup>l</sup> <sub>mn</sub>''}} are the [[Christoffel symbols]] for the selected coordinates. === {{mvar|N}} dimensions === In arbitrary [[curvilinear coordinates]] in {{math|''N''}} dimensions ({{math|''ξ''<sup>1</sup>, ..., ''ξ<sup>N</sup>''}}), we can write the Laplacian in terms of the inverse [[metric tensor]], <math> g^{ij} </math>: <math display="block">\Delta = \frac 1{\sqrt{\det g}}\frac{\partial}{\partial\xi^i} \left( \sqrt{\det g} \,g^{ij} \frac{\partial}{\partial \xi^j}\right) ,</math> from the [https://www.genealogy.math.ndsu.nodak.edu/id.php?id=59087 Voss]-[[Hermann Weyl|Weyl]] formula<ref>Archived at [https://ghostarchive.org/varchive/youtube/20211211/BD2AiFk651E Ghostarchive]{{cbignore}} and the [https://web.archive.org/web/20190220065415/https://www.youtube.com/watch?v=BD2AiFk651E&gl=US&hl=en Wayback Machine]{{cbignore}}: {{cite web | last1=Grinfeld | first1=Pavel | title=The Voss-Weyl Formula | website=[[YouTube]] | date=16 April 2014 | url=https://www.youtube.com/watch?v=BD2AiFk651E&list=PLlXfTHzgMRULkodlIEqfgTS-H1AY_bNtq&index=23 | access-date=9 January 2018 | language=en}}{{cbignore}}</ref> for the [[Divergence#General coordinates|divergence]]. In '''spherical coordinates in {{mvar|N}} dimensions''', with the parametrization {{math|1=''x'' = ''rθ'' ∈ '''R'''<sup>''N''</sup>}} with {{mvar|r}} representing a positive real radius and {{mvar|θ}} an element of the [[unit sphere]] {{math|[[N sphere|''S''<sup>''N''−1</sup>]]}}, <math display="block"> \Delta f = \frac{\partial^2 f}{\partial r^2} + \frac{N-1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \Delta_{S^{N-1}} f</math> where {{math|Δ<sub>''S''<sup>''N''−1</sup></sub>}} is the [[Laplace–Beltrami operator]] on the {{math|(''N'' − 1)}}-sphere, known as the spherical Laplacian. The two radial derivative terms can be equivalently rewritten as: <math display="block">\frac{1}{r^{N-1}} \frac{\partial}{\partial r} \left(r^{N-1} \frac{\partial f}{\partial r} \right).</math> As a consequence, the spherical Laplacian of a function defined on {{math|''S''<sup>''N''−1</sup> ⊂ '''R'''<sup>''N''</sup>}} can be computed as the ordinary Laplacian of the function extended to {{math|'''R'''<sup>''N''</sup>∖{0}<nowiki/>}} so that it is constant along rays, i.e., [[homogeneous function|homogeneous]] of degree zero.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Laplace operator
(section)
Add topic