Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Kalman filter
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Update === {| |- | style="width:180pt;" | [[Innovation (signal processing)|Innovation]] or measurement pre-fit residual | <math>\tilde{\mathbf{y}}_k = \mathbf{z}_k - \mathbf{H}_k\hat{\mathbf{x}}_{k\mid k-1}</math> |- | Innovation (or pre-fit residual) covariance | <math>\mathbf{S}_k = \mathbf{H}_k {\mathbf{P}}_{k\mid k-1} \mathbf{H}_k^\textsf{T} + \mathbf{R}_k</math> |- | ''Optimal'' Kalman gain | <math>\mathbf{K}_k = {\mathbf{P}}_{k\mid k-1}\mathbf{H}_k^\textsf{T} \mathbf{S}_k^{-1}</math> |- | Updated (''a posteriori'') state estimate | <math>\hat{\mathbf{x}}_{k\mid k} = \hat{\mathbf{x}}_{k\mid k-1} + \mathbf{K}_k\tilde{\mathbf{y}}_k</math> |- | Updated (''a posteriori'') estimate covariance | <math>\mathbf{P}_{k|k} = \left(\mathbf{I} - \mathbf{K}_k \mathbf{H}_k\right) {\mathbf{P}}_{k|k-1} </math> |- | Measurement post-fit [[residuals (statistics)|residual]] | <math>\tilde{\mathbf{y}}_{k\mid k} = \mathbf{z}_k - \mathbf{H}_k\hat{\mathbf{x}}_{k\mid k}</math> |} The formula for the updated (''a posteriori'') estimate covariance above is valid for the optimal '''K'''<sub>k</sub> gain that minimizes the residual error, in which form it is most widely used in applications. Proof of the formulae is found in the ''[[#Derivations|derivations]]'' section, where the formula valid for any '''K'''<sub>k</sub> is also shown. A more intuitive way to express the updated state estimate (<math>\hat{\mathbf{x}}_{k\mid k}</math>) is: :<math>\hat{\mathbf{x}}_{k\mid k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \hat{\mathbf{x}}_{k\mid k-1} + \mathbf{K}_k \mathbf{z}_k</math> This expression reminds us of a linear interpolation, <math>x = (1-t)(a) + t(b)</math> for <math>t</math> between [0,1]. In our case: * <math>t</math> is the matrix <math>\mathbf{K}_k \mathbf{H}_k</math> that takes values from <math>0</math> (high error in the sensor) to <math>I</math> or a projection (low error). * <math>a</math> is the internal state <math>\hat{\mathbf{x}}_{k\mid k-1}</math> estimated from the model. * <math>b</math> is the internal state <math>\mathbf{K}_k \mathbf{z}_k</math> estimated from the measurement, assuming <math>\mathbf{K}_k</math> is nonsingular. This expression also resembles the [[alpha beta filter]] update step.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Kalman filter
(section)
Add topic