Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Infimum and supremum
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Arithmetic operations on sets=== The following formulas depend on a notation that conveniently generalizes arithmetic operations on sets. Throughout, <math>A, B \subseteq \R</math> are sets of real numbers. '''Sum of sets''' The [[Minkowski sum]] of two sets <math>A</math> and <math>B</math> of real numbers is the set <math display=block>A + B ~:=~ \{a + b : a \in A, b \in B\}</math> consisting of all possible arithmetic sums of pairs of numbers, one from each set. The infimum and supremum of the Minkowski sum satisfy, if <math>A \ne \varnothing \ne B</math> <math display=block>\inf (A + B) = (\inf A) + (\inf B)</math> and <math display=block>\sup (A + B) = (\sup A) + (\sup B).</math> '''Product of sets''' The multiplication of two sets <math>A</math> and <math>B</math> of real numbers is defined similarly to their Minkowski sum: <math display=block>A \cdot B ~:=~ \{a \cdot b : a \in A, b \in B\}.</math> If <math>A</math> and <math>B</math> are nonempty sets of positive real numbers then <math>\inf (A \cdot B) = (\inf A) \cdot (\inf B)</math> and similarly for suprema <math>\sup (A \cdot B) = (\sup A) \cdot (\sup B).</math><ref name="zakon">{{cite book|title=Mathematical Analysis I|first=Elias|last=Zakon|pages=39β42|publisher=Trillia Group|date=2004|url=http://www.trillia.com/zakon-analysisI.html}}</ref> '''Scalar product of a set''' The product of a real number <math>r</math> and a set <math>B</math> of real numbers is the set <math display=block>r B ~:=~ \{r \cdot b : b \in B\}.</math> If <math>r > 0</math> then <math display=block>\inf (r \cdot A) = r (\inf A) \quad \text{ and } \quad \sup (r \cdot A) = r (\sup A),</math> while if <math>r < 0</math> then <math display=block>\inf (r \cdot A) = r (\sup A) \quad \text{ and } \quad \sup (r \cdot A) = r (\inf A).</math> In the case <math>r = 0</math>, one has, if <math>A \ne \varnothing</math> <math display=block> \inf (0 \cdot A) = 0 \quad \text{ and } \quad \sup (0 \cdot A) = 0 </math> Using <math>r = -1</math> and the notation <math display=inline>-A := (-1) A = \{- a : a \in A\},</math> it follows that, <math display=block>\inf (- A) = - \sup A \quad \text{ and } \quad \sup (- A) = - \inf A.</math> '''Multiplicative inverse of a set''' For any set <math>S</math> that does not contain <math>0,</math> let <math display=block>\frac{1}{S} ~:=\; \left\{\tfrac{1}{s} : s \in S\right\}.</math> If <math>S \subseteq (0, \infty)</math> is non-empty then <math display=block>\frac{1}{\sup_{} S} ~=~ \inf_{} \frac{1}{S}</math> where this equation also holds when <math>\sup_{} S = \infty</math> if the definition <math>\frac{1}{\infty} := 0</math> is used.<ref group="note" name="DivisionByInfinityOr0">The definition <math>\tfrac{1}{\infty} := 0</math> is commonly used with the [[extended real number]]s; in fact, with this definition the equality <math>\tfrac{1}{\sup_{} S} = \inf_{} \tfrac{1}{S}</math> will also hold for any non-empty subset <math>S \subseteq (0, \infty].</math> However, the notation <math>\tfrac{1}{0}</math> is usually left undefined, which is why the equality <math>\tfrac{1}{\inf_{} S} = \sup_{} \tfrac{1}{S}</math> is given only for when <math>\inf_{} S > 0.</math></ref> This equality may alternatively be written as <math>\frac{1}{\displaystyle\sup_{s \in S} s} = \inf_{s \in S} \tfrac{1}{s}.</math> Moreover, <math>\inf_{} S = 0</math> if and only if <math>\sup_{} \tfrac{1}{S} = \infty,</math> where if<ref group=note name="DivisionByInfinityOr0" /> <math>\inf_{} S > 0,</math> then <math>\tfrac{1}{\inf_{} S} = \sup_{} \tfrac{1}{S}.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Infimum and supremum
(section)
Add topic