Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Indifference curve
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Formal link to utility theory === In the example above, an element <math>a\;</math> of the set <math>A\;</math> is made of two numbers: The number of apples, call it <math>x,\;</math> and the number of bananas, call it <math>y.\;</math> In [[utility]] theory, the [[utility function]] of an [[agent (economics)|agent]] is a function that ranks ''all'' pairs of consumption bundles by order of preference (''completeness'') such that any set of three or more bundles forms a [[transitive relation]]. This means that for each bundle <math>\left(x,y\right)</math> there is a unique relation, <math>U\left(x,y\right)</math>, representing the [[utility]] (satisfaction) relation associated with <math>\left(x,y\right)</math>. The relation <math>\left(x,y\right)\to U\left(x,y\right)</math> is called the [[utility function]]. The [[Range of a function|range]] of the function is a set of [[real numbers]]. The actual values of the function have no importance. Only the ranking of those values has content for the theory. More precisely, if <math>U(x,y)\geq U(x',y')</math>, then the bundle <math>\left(x,y\right)</math> is described as at least as good as the bundle <math>\left(x',y'\right)</math>. If <math>U\left(x,y\right)>U\left(x',y'\right)</math>, the bundle <math>\left(x,y\right)</math> is described as strictly preferred to the bundle <math>\left(x',y'\right)</math>. Consider a particular bundle <math>\left(x_0,y_0\right)</math> and take the [[total derivative]] of <math>U\left(x,y\right)</math> about this point: :<math>dU\left(x_0,y_0\right)=U_1\left(x_0,y_0\right)dx+U_2\left(x_0,y_0\right)dy </math> or, without loss of generality, :<math>\frac{dU\left(x_0,y_0\right)}{dx}= U_1(x_0,y_0).1+ U_2(x_0,y_0)\frac{dy}{dx}</math> '''(Eq. 1)''' where <math>U_1\left(x,y\right)</math> is the partial derivative of <math>U\left(x,y\right)</math> with respect to its first argument, evaluated at <math>\left(x,y\right)</math>. (Likewise for <math>U_2\left(x,y\right).</math>) The indifference curve through <math>\left(x_0,y_0\right)</math> must deliver at each bundle on the curve the same utility level as bundle <math>\left(x_0,y_0\right)</math>. That is, when preferences are represented by a utility function, the indifference curves are the [[level curve]]s of the utility function. Therefore, if one is to change the quantity of <math>x\,</math> by <math>dx\,</math>, without moving off the indifference curve, one must also change the quantity of <math>y\,</math> by an amount <math>dy\,</math> such that, in the end, there is no change in ''U'': :<math>\frac{dU\left(x_0,y_0\right)}{dx}= 0</math>, or, substituting ''0'' into ''(Eq. 1)'' above to solve for ''dy/dx'': :<math>\frac{dU\left(x_0,y_0\right)}{dx} = 0\Leftrightarrow\frac{dy}{dx}=-\frac{U_1(x_0,y_0)}{U_2(x_0,y_0)}</math>. Thus, the ratio of marginal utilities gives the absolute value of the [[slope]] of the indifference curve at point <math>\left(x_0,y_0\right)</math>. This ratio is called the [[marginal rate of substitution]] between <math>x\,</math> and <math>y\,</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Indifference curve
(section)
Add topic