Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
IBM 1620
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==1620 non-decimal arithmetic== Since the ''Model I'' used in-memory lookup tables for addition/subtraction,<ref name=Swansea>{{cite web |url=https://www.swansea.ac.uk/library/archive-and-research-collections/hocc/computersandsoftware/earlycomputers/ibm1620 |title=IBM 1620 |website=Swansea University{{snd}} swansea.ac.uk |access-date=2017-12-19 |archive-url = https://web.archive.org/web/20171222105457/http://www.swansea.ac.uk/library/archive-and-research-collections/hocc/computersandsoftware/earlycomputers/ibm1620 |archive-date=2017-12-22 |url-status=dead}}</ref> limited bases (5 to 9) unsigned number arithmetic could be performed by changing the contents of these tables, but noting that the hardware included a ten's complementer for subtraction (and addition of oppositely signed numbers). To do fully signed addition and subtraction in bases 2 to 4 required detailed understanding of the hardware to create a "folded" addition table that would fake out the complementer and carry logic. Also the addition table would have to be reloaded for normal base 10 operation every time address calculations were required in the program, then reloaded again for the alternate base. This made the "trick" somewhat less than useful for any practical application. Since the ''Model II'' had addition and subtraction fully implemented in hardware, changing the table in memory could not be used as a "trick" to change arithmetic bases. However an optional special feature in hardware for octal input/output, logical operations, and base conversion to/from decimal was available. Although bases other than 8 and 10 were not supported, this made the Model II very practical for applications that needed to manipulate data formatted in octal by other computers (e.g., the IBM 7090).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
IBM 1620
(section)
Add topic