Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Hamiltonian (quantum mechanics)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Expressions for the Hamiltonian== Following are expressions for the Hamiltonian in a number of situations.<ref>{{cite book |title=Quanta: A Handbook of Concepts |first=P. W. |last=Atkins |publisher=Oxford University Press |year=1974 |isbn=0-19-855493-1 }}</ref> Typical ways to classify the expressions are the number of particles, number of dimensions, and the nature of the potential energy function—importantly space and time dependence. Masses are denoted by <math>m</math>, and charges by <math>q</math>. ===Free particle=== The particle is not bound by any potential energy, so the potential is zero and this Hamiltonian is the simplest. For one dimension: <math display="block">\hat{H} = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} </math> and in higher dimensions: <math display="block">\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 </math> ===Constant-potential well=== For a particle in a region of constant potential <math>V = V_0</math> (no dependence on space or time), in one dimension, the Hamiltonian is: <math display="block">\hat{H} = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V_0 </math> in three dimensions <math display="block">\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + V_0 </math> This applies to the elementary "[[particle in a box]]" problem, and [[step potential]]s. ===Simple harmonic oscillator=== For a [[simple harmonic oscillator]] in one dimension, the potential varies with position (but not time), according to: <math display="block">V = \frac{k}{2}x^2 = \frac{m\omega^2}{2}x^2 </math> where the [[angular frequency]] <math>\omega</math>, effective [[spring constant]] <math>k</math>, and mass <math>m</math> of the oscillator satisfy: <math display="block">\omega^2 = \frac{k}{m}</math> so the Hamiltonian is: <math display="block">\hat{H} = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \frac{m\omega^2}{2}x^2 </math> For three dimensions, this becomes <math display="block">\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + \frac{m\omega^2}{2} r^2 </math> where the three-dimensional position vector <math>\mathbf{r}</math> using Cartesian coordinates is <math>(x, y, z)</math>, its magnitude is <math display="block">r^2 = \mathbf{r}\cdot\mathbf{r} = |\mathbf{r}|^2 = x^2+y^2+z^2 </math> Writing the Hamiltonian out in full shows it is simply the sum of the one-dimensional Hamiltonians in each direction: <math display="block">\begin{align} \hat{H} & = -\frac{\hbar^2}{2m}\left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) + \frac{m\omega^2}{2} \left(x^2 + y^2 + z^2\right) \\[6pt] & = \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \frac{m\omega^2}{2}x^2\right) + \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial y^2} + \frac{m\omega^2}{2}y^2 \right ) + \left(- \frac{\hbar^2}{2m}\frac{\partial^2}{\partial z^2} +\frac{m\omega^2}{2}z^2 \right) \end{align}</math> ===Rigid rotor=== For a [[rigid rotor]]—i.e., system of particles which can rotate freely about any axes, not bound in any potential (such as free molecules with negligible vibrational [[Degrees of freedom (physics and chemistry)|degrees of freedom]], say due to [[double bond|double]] or [[triple bond|triple]] [[chemical bond]]s), the Hamiltonian is: <math display="block"> \hat{H} = -\frac{\hbar^2}{2I_{xx}}\hat{J}_x^2 -\frac{\hbar^2}{2I_{yy}}\hat{J}_y^2 -\frac{\hbar^2}{2I_{zz}}\hat{J}_z^2 </math> where <math>I_{xx}</math>, <math>I_{yy}</math>, and <math>I_{zz}</math> are the [[moment of inertia]] components (technically the diagonal elements of the [[Moment of inertia#Moment of inertia tensor|moment of inertia tensor]]), and {{nowrap|<math> \hat{J}_x</math>,}} {{nowrap|<math> \hat{J}_y</math>,}} and <math> \hat{J}_z</math> are the total [[angular momentum]] operators (components), about the <math>x</math>, <math>y</math>, and <math>z</math> axes respectively. ===Electrostatic (Coulomb) potential=== The [[Coulomb potential energy]] for two point charges <math>q_1</math> and <math>q_2</math> (i.e., those that have no spatial extent independently), in three dimensions, is (in [[SI units]]—rather than [[Gaussian units]] which are frequently used in [[electromagnetism]]): <math display="block">V = \frac{q_1q_2}{4\pi\varepsilon_0 |\mathbf{r}|}</math> However, this is only the potential for one point charge due to another. If there are many charged particles, each charge has a potential energy due to every other point charge (except itself). For <math>N</math> charges, the potential energy of charge <math>q_j</math> due to all other charges is (see also [[Electric potential energy#Electrostatic potential energy stored in a system of point charges|Electrostatic potential energy stored in a configuration of discrete point charges]]):<ref>{{cite book |title=Electromagnetism |url=https://archive.org/details/electromagnetism0000gran |url-access=registration |edition=2nd |first1=I. S. |last1=Grant |first2=W. R. |last2=Phillips |series=Manchester Physics Series |year=2008 |isbn=978-0-471-92712-9 }}</ref> <math display="block">V_j = \frac{1}{2}\sum_{i\neq j} q_i \phi(\mathbf{r}_i)=\frac{1}{8\pi\varepsilon_0}\sum_{i\neq j} \frac{q_iq_j}{|\mathbf{r}_i-\mathbf{r}_j|}</math> where <math>\phi(\mathbf{r}_i)</math> is the electrostatic potential of charge <math>q_j</math> at <math>\mathbf{r}_i</math>. The total potential of the system is then the sum over <math>j</math>: <math display="block">V = \frac{1}{8\pi\varepsilon_0}\sum_{j=1}^N\sum_{i\neq j} \frac{q_iq_j}{|\mathbf{r}_i-\mathbf{r}_j|}</math> so the Hamiltonian is: <math display="block">\begin{align} \hat{H} & = -\frac{\hbar^2}{2}\sum_{j=1}^N\frac{1}{m_j}\nabla_j^2 + \frac{1}{8\pi\varepsilon_0}\sum_{j=1}^N\sum_{i\neq j} \frac{q_iq_j}{|\mathbf{r}_i-\mathbf{r}_j|} \\ & = \sum_{j=1}^N \left ( -\frac{\hbar^2}{2m_j}\nabla_j^2 + \frac{1}{8\pi\varepsilon_0}\sum_{i\neq j} \frac{q_iq_j}{|\mathbf{r}_i-\mathbf{r}_j|}\right) \\ \end{align}</math> ===Electric dipole in an electric field=== For an [[electric dipole moment]] <math>\mathbf{d}</math> constituting charges of magnitude <math>q</math>, in a uniform, [[electrostatic field]] (time-independent) <math>\mathbf{E}</math>, positioned in one place, the potential is: <math display="block">V = -\mathbf{\hat{d}}\cdot\mathbf{E} </math> the dipole moment itself is the operator <math display="block">\mathbf{\hat{d}} = q\mathbf{\hat{r}} </math> Since the particle is stationary, there is no translational kinetic energy of the dipole, so the Hamiltonian of the dipole is just the potential energy: <math display="block">\hat{H} = -\mathbf{\hat{d}}\cdot\mathbf{E} = -q\mathbf{\hat{r}}\cdot\mathbf{E}</math> ===Magnetic dipole in a magnetic field=== For a magnetic dipole moment <math>\boldsymbol{\mu}</math> in a uniform, magnetostatic field (time-independent) <math>\mathbf{B}</math>, positioned in one place, the potential is: <math display="block">V = -\boldsymbol{\mu}\cdot\mathbf{B} </math> Since the particle is stationary, there is no translational kinetic energy of the dipole, so the Hamiltonian of the dipole is just the potential energy: <math display="block">\hat{H} = -\boldsymbol{\mu}\cdot\mathbf{B} </math> For a [[spin-1/2|spin-{{frac|1|2}}]] particle, the corresponding spin magnetic moment is:<ref>{{cite book |title=Physics of Atoms and Molecules |first1=B. H. |last1=Bransden |first2=C. J. |last2=Joachain |publisher=Longman |year=1983 |isbn=0-582-44401-2 }}</ref> <math display="block">\boldsymbol{\mu}_S = \frac{g_s e}{2m} \mathbf{S} </math> where <math>g_s</math> is the "spin [[g-factor (physics)|g-factor]]" (not to be confused with the [[gyromagnetic ratio]]), <math>e</math> is the electron charge, <math>\mathbf{S}</math> is the [[Spin (physics)#Pauli matrices and spin operators|spin operator]] vector, whose components are the [[Pauli matrices]], hence <math display="block">\hat{H} = \frac{g_s e}{2m} \mathbf{S} \cdot\mathbf{B} </math> ===Charged particle in an electromagnetic field=== For a particle with mass <math>m</math> and charge <math>q</math> in an electromagnetic field, described by the [[scalar potential]] <math>\phi</math> and [[vector potential]] <math>\mathbf{A}</math>, there are two parts to the Hamiltonian to substitute for.<ref name="QuantumPhysics" /> The canonical momentum operator <math>\mathbf{\hat{p}}</math>, which includes a contribution from the <math>\mathbf{A}</math> field and fulfils the [[canonical commutation relation]], must be quantized; <math display="block">\mathbf{\hat{p}} = m\dot{\mathbf{r}} + q\mathbf{A} ,</math> where <math>m\dot{\mathbf{r}}</math> is the [[kinetic momentum]]. The quantization prescription reads <math display="block">\mathbf{\hat{p}} = -i\hbar\nabla ,</math> so the corresponding kinetic energy operator is <math display="block">\hat{T} = \frac{1}{2} m\dot{\mathbf{r}}\cdot\dot{\mathbf{r}} = \frac{1}{2m} \left ( \mathbf{\hat{p}} - q\mathbf{A} \right)^2 </math> and the potential energy, which is due to the <math>\phi</math> field, is given by <math display="block">\hat{V} = q\phi .</math> Casting all of these into the Hamiltonian gives <math display="block">\hat{H} = \frac{1}{2m} \left ( -i\hbar\nabla - q\mathbf{A} \right)^2 + q\phi .</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Hamiltonian (quantum mechanics)
(section)
Add topic