Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Georg Cantor
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====One-to-one correspondence==== {{Main|Bijection}} [[File:Bijection.svg|thumb|A bijective function]] Cantor's 1874 [[Crelle's Journal|Crelle]] paper was the first to invoke the notion of a [[Bijection|1-to-1 correspondence]], though he did not use that phrase. He then began looking for a 1-to-1 correspondence between the points of the [[unit square]] and the points of a unit [[line segment]]. In an 1877 letter to Richard Dedekind, Cantor proved a far [[Mathematical jargon#stronger|stronger]] result: for any positive integer ''n'', there exists a 1-to-1 correspondence between the points on the unit line segment and all of the points in an [[n-dimensional space|''n''-dimensional space]]. About this discovery Cantor wrote to Dedekind: "{{lang|fr|Je le vois, mais je ne le crois pas!}}" ("I see it, but I don't believe it!")<ref>{{Cite book |last=Wallace |first=David Foster |year=2003|title=Everything and More: A Compact History of Infinity|place=New York|publisher=W. W. Norton and Company|isbn=978-0-393-00338-3|page=[https://archive.org/details/everythingmore00davi/page/259 259]|url=https://archive.org/details/everythingmore00davi/page/259}}</ref> The result that he found so astonishing has implications for geometry and the notion of [[dimension]]. In 1878, Cantor submitted another paper to Crelle's Journal, in which he defined precisely the concept of a 1-to-1 correspondence and introduced the notion of "[[cardinality|power]]" (a term he took from [[Jakob Steiner]]) or "equivalence" of sets: two sets are equivalent (have the same power) if there exists a 1-to-1 correspondence between them. Cantor defined [[countable set]]s (or denumerable sets) as sets which can be put into a 1-to-1 correspondence with the [[natural number]]s, and proved that the rational numbers are denumerable. He also proved that ''n''-dimensional [[Euclidean space]] '''R'''<sup>''n''</sup> has the same power as the [[real number]]s '''R''', as does a countably infinite [[Cartesian product|product]] of copies of '''R'''. While he made free use of countability as a concept, he did not write the word "countable" until 1883. Cantor also discussed his thinking about [[dimension]], stressing that his [[Map (mathematics)|mapping]] between the [[unit interval]] and the unit square was not a [[continuous function|continuous]] one. This paper displeased Kronecker and Cantor wanted to withdraw it; however, Dedekind persuaded him not to do so and [[Karl Weierstrass]] supported its publication.<ref>[[#Dauben1979|Dauben 1979]], pp. 69, 324 ''63n''. The paper had been submitted in July 1877. Dedekind supported it, but delayed its publication due to Kronecker's opposition. Weierstrass actively supported it.</ref> Nevertheless, Cantor never again submitted anything to Crelle.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Georg Cantor
(section)
Add topic