Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Geometric mean
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Average proportional growth rate=== {{Further|Compound annual growth rate}} The geometric mean is more appropriate than the [[arithmetic mean]] for describing proportional growth, both [[exponential growth]] (constant proportional growth) and varying growth; in business the geometric mean of growth rates is known as the [[compound annual growth rate]] (CAGR). The geometric mean of growth over periods yields the equivalent constant growth rate that would yield the same final amount. As an example, suppose an orange tree yields 100 oranges one year and then 180, 210 and 300 the following years, for growth rates of 80%, 16.7% and 42.9% respectively. Using the [[arithmetic mean]] calculates a (linear) average growth of 46.5% (calculated by <math>(80% + 16.7% + 42.9%)\div 3</math>). However, when applied to the 100 orange starting yield, 46.5% annual growth results in 314 oranges after three years of growth, rather than the observed 300. The linear average overstates the rate of growth. Instead, using the geometric mean, the average yearly growth is approximately 44.2% (calculated by <math>\sqrt[3]{1.80 \times 1.167 \times 1.429}</math>). Starting from a 100 orange yield with annual growth of 44.2% gives the expected 300 orange yield after three years. In order to determine the average growth rate, it is not necessary to take the product of the measured growth rates at every step. Let the quantity be given as the sequence <math>a_0, a_1,..., a_n</math>, where <math>n</math> is the number of steps from the initial to final state. The growth rate between successive measurements <math>a_k</math> and <math>a_{k+1}</math> is <math>a_{k+1}/a_k</math>. The geometric mean of these growth rates is then just: :<math>\left( \frac{a_1}{a_0} \frac{a_2}{a_1} \cdots \frac{a_n}{a_{n-1}} \right)^\frac{1}{n} = \left(\frac{a_n}{a_0}\right)^\frac{1}{n}.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Geometric mean
(section)
Add topic