Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Finite difference
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Application=== This identity can be used to find the lowest-degree polynomial that intercepts a number of points {{math|(''x'', ''y'')}} where the difference on the ''x''-axis from one point to the next is a constant {{math|''h'' ≠ 0}}. For example, given the following points: {| class="wikitable" |- ! ''x'' !! ''y'' |- | 1|| 4 |- | 4|| 109 |- | 7|| 772 |- | 10|| 2641 |- | 13|| 6364 |} We can use a differences table, where for all cells to the right of the first {{math|''y''}}, the following relation to the cells in the column immediately to the left exists for a cell {{math|(''a'' + 1, ''b'' + 1)}}, with the top-leftmost cell being at coordinate {{math|(0, 0)}}: <math display="block">(a+1, b+1) = (a, b+1) - (a, b)</math> To find the first term, the following table can be used: {| class="wikitable" |- ! {{math|''x''}} !! {{math|''y''}} !! {{math|Δ''y''}} !! {{math|Δ<sup>2</sup>''y''}} !! {{math|Δ<sup>3</sup>''y''}} |- ! 1 | 4 |- ! 4 | 109|| 105 |- ! 7 | 772|| 663|| 558 |- ! 10 | 2641|| 1869|| 1206|| 648 |- ! 13 | 6364|| 3723|| 1854|| 648 |} This arrives at a constant {{math|648}}. The arithmetic difference is {{math|1=''h'' = 3}}, as established above. Given the number of pairwise differences needed to reach the constant, it can be surmised this is a polynomial of degree {{math|3}}. Thus, using the identity above: <math display="block">648 = a \cdot 3^3 \cdot 3! = a \cdot 27 \cdot 6 = a \cdot 162</math> Solving for {{math|''a''}}, it can be found to have the value {{math|4}}. Thus, the first term of the polynomial is {{math|4''x''<sup>3</sup>}}. Then, subtracting out the first term, which lowers the polynomial's degree, and finding the finite difference again: {| class="wikitable" |- ! {{mvar|x}} !! {{mvar|y}} !! {{math|Δ''y''}} !! {{math|Δ<sup>2</sup>''y''}} |- ! 1 | {{math|4 β 4(1)<sup>3</sup> {{=}} 4 β 4 {{=}} 0}} |- ! 4 | {{math|109 β 4(4)<sup>3</sup> {{=}} 109 β 256 {{=}} β147}}|| β147 |- ! 7 | {{math|772 β 4(7)<sup>3</sup> {{=}} 772 β 1372 {{=}} β600}}|| β453|| β306 |- ! 10 | {{math|2641 β 4(10)<sup>3</sup> {{=}} 2641 β 4000 {{=}} β1359}}|| β759|| β306 |- ! 13 | {{math|6364 β 4(13)<sup>3</sup> {{=}} 6364 β 8788 {{=}} β2424}}|| β1065|| β306 |} Here, the constant is achieved after only two pairwise differences, thus the following result: <math display="block">-306 = a \cdot 3^2 \cdot 2! = a \cdot 18</math> Solving for {{math|''a''}}, which is {{math|β17}}, the polynomial's second term is {{math|β17''x''<sup>2</sup>}}. Moving on to the next term, by subtracting out the second term: {| class="wikitable" |- ! {{math|''x''}} !! {{math|''y''}} !! {{math|Δ''y''}} |- ! 1 | {{math|0 β (β17(1)<sup>2</sup>) {{=}} 0 + 17 {{=}} 17}} |- ! 4 | {{math|β147 β (β17(4)<sup>2</sup>) {{=}} β147 + 272 {{=}} 125}}|| 108 |- ! 7 | {{math|β600 β (β17(7)<sup>2</sup>) {{=}} β600 + 833 {{=}} 233 }}|| 108 |- ! 10 | {{math|β1359 β (β17(10)<sup>2</sup>) {{=}} β1359 + 1700 {{=}} 341 }}|| 108 |- ! 13 | {{math|β2424 β (β17(13)<sup>2</sup>) {{=}} β2424 + 2873 {{=}} 449 }}|| 108 |} Thus the constant is achieved after only one pairwise difference: <math display="block">108 = a \cdot 3^1 \cdot 1! = a \cdot 3</math> It can be found that {{math|1=''a'' = 36}} and thus the third term of the polynomial is {{math|'''36''x'''''}}. Subtracting out the third term: {| class="wikitable" |- ! {{math|''x''}} !! {{math|''y''}} |- ! 1 | {{math|17 β 36(1) {{=}} 17 β 36 {{=}} β19}} |- ! 4 | {{math|125 β 36(4) {{=}} 125 β 144 {{=}} β19}} |- ! 7 | {{math|233 β 36(7) {{=}} 233 β 252 {{=}} β19}} |- ! 10 | {{math|341 β 36(10) {{=}} 341 β 360 {{=}} β19}} |- ! 13 | {{math|449 β 36(13) {{=}} 449 β 468 {{=}} β19}} |} Without any pairwise differences, it is found that the 4th and final term of the polynomial is the constant {{math|β19}}. Thus, the lowest-degree polynomial intercepting all the points in the first table is found: <math display="block">4x^3 - 17x^2 + 36x - 19</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Finite difference
(section)
Add topic