Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Exponential function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Properties=== ''[[multiplicative inverse|Reciprocal]]:'' The functional equation implies {{tmath|1=e^x e^{-x}=1}}. Therefore {{tmath|e^x \ne 0}} for every {{tmath|x}} and <math display=block>\frac 1{e^x}=e^{-x}.</math> ''Positiveness:'' {{tmath|e^x>0}} for every real number {{tmath|x}}. This results from the [[intermediate value theorem]], since {{tmath|1=e^0=1}} and, if one would have {{tmath|e^x<0}} for some {{tmath|x}}, there would be an {{tmath|y}} such that {{tmath|1=e^y=0}} between {{tmath|0}} and {{tmath|x}}. Since the exponential function equals its derivative, this implies that the exponential function is [[monotonically increasing]]. ''Extension of [[exponentiation]] to positive real bases:'' Let {{mvar|b}} be a positive real number. The exponential function and the natural logarithm being the inverse each of the other, one has <math>b=\exp(\ln b).</math> If {{mvar|n}} is an integer, the functional equation of the logarithm implies <math display=block>b^n=\exp(\ln b^n)= \exp(n\ln b).</math> Since the right-most expression is defined if {{mvar|n}} is any real number, this allows defining {{tmath|b^x}} for every positive real number {{mvar|b}} and every real number {{mvar|x}}: <math display=block>b^x=\exp(x\ln b).</math> In particular, if {{mvar|b}} is the [[Euler's number]] <math>e=\exp(1),</math> one has <math>\ln e=1</math> (inverse function) and thus <math display=block>e^x=\exp(x).</math> This shows the equivalence of the two notations for the exponential function.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Exponential function
(section)
Add topic