Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euler–Maclaurin formula
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Asymptotic expansion of sums=== In the context of computing [[asymptotic expansion]]s of sums and [[Series (mathematics)|series]], usually the most useful form of the Euler–Maclaurin formula is <math display=block>\sum_{n=a}^b f(n) \sim \int_a^b f(x)\,dx + \frac{f(b) + f(a)}{2} + \sum_{k=1}^\infty \,\frac{B_{2k}}{(2k)!} \left(f^{(2k - 1)}(b) - f^{(2k - 1)}(a)\right),</math> where {{mvar|a}} and {{mvar|b}} are integers.<ref>{{Cite book | editor1-last=Abramowitz | editor1-first=Milton | editor1-link=Milton Abramowitz | editor2-last=Stegun | editor2-first=Irene A. | editor2-link=Irene Stegun | title=[[Abramowitz and Stegun|Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables]] | publisher=[[Dover Publications]] | location=New York | isbn=978-0-486-61272-0 | year=1972 | pages = 16, 806, 886}}</ref> Often the expansion remains valid even after taking the limits {{math|''a'' → −∞}} or {{math|''b'' → +∞}} or both. In many cases the integral on the right-hand side can be evaluated in [[Differential Galois theory|closed form]] in terms of [[elementary function]]s even though the sum on the left-hand side cannot. Then all the terms in the asymptotic series can be expressed in terms of elementary functions. For example, <math display=block>\sum_{k=0}^\infty \frac{1}{(z + k)^2} \sim \underbrace{\int_0^\infty\frac{1}{(z + k)^2}\,dk}_{= \dfrac{1}{z}} + \frac{1}{2z^2} + \sum_{t = 1}^\infty \frac{B_{2t}}{z^{2t + 1}}.</math> Here the left-hand side is equal to {{math|''ψ''<sup>(1)</sup>(''z'')}}, namely the first-order [[Polygamma function#Series representation|polygamma function]] defined by :<math>\psi^{(1)}(z) = \frac{d^2}{dz^2}\log \Gamma(z);</math> the [[gamma function]] {{math|Γ(''z'')}} is equal to {{math|(''z'' − 1)!}} when {{mvar|z}} is a [[positive integer]]. This results in an asymptotic expansion for {{math|''ψ''<sup>(1)</sup>(''z'')}}. That expansion, in turn, serves as the starting point for one of the derivations of precise error estimates for [[Stirling's approximation]] of the [[factorial]] function. ====Examples==== If {{mvar|s}} is an integer greater than 1 we have: <math display=block>\sum_{k=1}^n \frac{1}{k^s} \approx \frac 1{s-1}+\frac 12-\frac 1{(s-1)n^{s-1}}+\frac 1{2n^s}+\sum_{i=1}\frac{B_{2i}}{(2i)!}\left[\frac{(s+2i-2)!}{(s-1)!}-\frac{(s+2i-2)!}{(s-1)!n^{s+2i-1}}\right].</math> Collecting the constants into a value of the [[Riemann zeta function]], we can write an asymptotic expansion: <math display=block>\sum_{k=1}^n \frac{1}{k^s} \sim\zeta(s)-\frac 1{(s-1)n^{s-1}}+\frac 1{2n^s}-\sum_{i=1}\frac{B_{2i}}{(2i)!}\frac{(s+2i-2)!}{(s-1)!n^{s+2i-1}}.</math> For {{mvar|s}} equal to 2 this simplifies to <math display=block>\sum_{k=1}^n \frac{1}{k^2} \sim\zeta(2)-\frac 1n+\frac 1{2n^2}-\sum_{i=1}\frac{B_{2i}}{n^{2i+1}},</math> or <math display=block>\sum_{k=1}^n \frac{1}{k^2} \sim \frac{\pi^2}{6} -\frac{1}{n} +\frac{1}{2n^2} -\frac{1}{6n^3}+\frac{1}{30n^5}-\frac{1}{42n^7} + \cdots.</math> When {{math|''s'' {{=}} 1}}, the corresponding technique gives an asymptotic expansion for the [[harmonic number]]s: <math display=block>\sum_{k=1}^n \frac{1}{k} \sim \gamma + \log n + \frac{1}{2n} - \sum_{k=1}^\infty \frac{B_{2k}}{2kn^{2k}},</math> where {{math|''γ'' ≈ 0.5772...}} is the [[Euler–Mascheroni constant]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euler–Maclaurin formula
(section)
Add topic