Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Error function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Asymptotic expansion=== A useful [[asymptotic expansion]] of the complementary error function (and therefore also of the error function) for large real {{mvar|x}} is <math display="block">\begin{align} \operatorname{erfc} x &= \frac{e^{-x^2}}{x\sqrt{\pi}}\left(1 + \sum_{n=1}^\infty (-1)^n \frac{1\cdot3\cdot5\cdots(2n - 1)}{\left(2x^2\right)^n}\right) \\[6pt] &= \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n - 1)!!}{\left(2x^2\right)^n}, \end{align}</math> where {{math|(2''n'' β 1)!!}} is the [[double factorial]] of {{math|(2''n'' β 1)}}, which is the product of all odd numbers up to {{math|(2''n'' β 1)}}. This series diverges for every finite {{mvar|x}}, and its meaning as asymptotic expansion is that for any integer {{math|''N'' β₯ 1}} one has <math display="block">\operatorname{erfc} x = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^{N-1} (-1)^n \frac{(2n - 1)!!}{\left(2x^2\right)^n} + R_N(x)</math> where the remainder is <math display="block">R_N(x) := \frac{(-1)^N \, (2 N - 1)!!}{\sqrt{\pi} \cdot 2^{N - 1}} \int_x^\infty t^{-2N}e^{-t^2}\,\mathrm dt,</math> which follows easily by induction, writing <math display="block">e^{-t^2} = -\frac{1}{2 t} \, \frac{\mathrm{d}}{\mathrm{d}t} e^{-t^2}</math> and integrating by parts. The asymptotic behavior of the remainder term, in [[Landau notation]], is <math display="block">R_N(x) = O\left(x^{- (1 + 2N)} e^{-x^2}\right)</math> as {{math|''x'' β β}}. This can be found by <math display="block">R_N(x) \propto \int_x^\infty t^{-2N}e^{-t^2}\,\mathrm dt = e^{-x^2} \int_0^\infty (t+x)^{-2N}e^{-t^2-2tx}\,\mathrm dt\leq e^{-x^2} \int_0^\infty x^{-2N} e^{-2tx}\,\mathrm dt \propto x^{-(1+2N)}e^{-x^2}.</math> For large enough values of {{mvar|x}}, only the first few terms of this asymptotic expansion are needed to obtain a good approximation of {{math|erfc ''x''}} (while for not too large values of {{mvar|x}}, the above Taylor expansion at 0 provides a very fast convergence).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Error function
(section)
Add topic