Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Entropy (information theory)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Discussion ==== The rule of additivity has the following consequences: for [[positive integers]] {{math|''b''<sub>''i''</sub>}} where {{math|''b''<sub>1</sub> + ... + ''b''<sub>''k''</sub> {{=}} ''n''}}, <math display="block">\Eta_n\left(\frac{1}{n}, \ldots, \frac{1}{n}\right) = \Eta_k\left(\frac{b_1}{n}, \ldots, \frac{b_k}{n}\right) + \sum_{i=1}^k \frac{b_i}{n} \, \Eta_{b_i}\left(\frac{1}{b_i}, \ldots, \frac{1}{b_i}\right).</math> Choosing {{math|''k'' {{=}} ''n''}}, {{math|''b''<sub>1</sub> {{=}} ... {{=}} ''b''<sub>''n''</sub> {{=}} 1}} this implies that the entropy of a certain outcome is zero: {{math|Ξ<sub>1</sub>(1) {{=}} 0}}. This implies that the efficiency of a source set with {{math|''n''}} symbols can be defined simply as being equal to its {{math|''n''}}-ary entropy. See also [[Redundancy (information theory)]]. The characterization here imposes an additive property with respect to a [[partition of a set]]. Meanwhile, the [[conditional probability]] is defined in terms of a multiplicative property, <math>P(A\mid B)\cdot P(B)=P(A\cap B)</math>. Observe that a logarithm mediates between these two operations. The [[conditional entropy]] and related quantities inherit simple relation, in turn. The measure theoretic definition in the previous section defined the entropy as a sum over expected surprisals <math>\mu(A)\cdot \ln\mu(A)</math> for an extremal partition. Here the logarithm is ad hoc and the entropy is not a measure in itself. At least in the information theory of a binary string, <math>\log_2</math> lends itself to practical interpretations. Motivated by such relations, a plethora of related and competing quantities have been defined. For example, [[David Ellerman]]'s analysis of a "logic of partitions" defines a competing measure in structures [[Duality (mathematics)|dual]] to that of subsets of a universal set.<ref>{{cite journal |last1=Ellerman |first1=David |title=Logical Information Theory: New Logical Foundations for Information Theory |journal=Logic Journal of the IGPL |date=October 2017 |volume=25 |issue=5 |pages=806β835 |doi=10.1093/jigpal/jzx022 |url=http://philsci-archive.pitt.edu/13213/1/Logic-to-information-theory3.pdf |access-date=2 November 2022 |archive-date=25 December 2022 |archive-url=https://web.archive.org/web/20221225080028/https://philsci-archive.pitt.edu/13213/1/Logic-to-information-theory3.pdf |url-status=live }}</ref> Information is quantified as "dits" (distinctions), a measure on partitions. "Dits" can be converted into [[Shannon (unit)|Shannon's bits]], to get the formulas for conditional entropy, and so on.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Entropy (information theory)
(section)
Add topic