Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cross section (physics)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Cross section and Mie theory === Cross sections commonly calculated using [[Mie scattering|Mie theory]] include efficiency coefficients for extinction <math display="inline">Q_\text{ext}</math>, scattering <math display="inline">Q_\text{sc}</math>, and Absorption <math display="inline">Q_\text{abs}</math> cross sections. These are normalized by the geometrical cross sections of the particle <math display="inline">\sigma_\text{geom} = \pi a^2</math> as <math display="block"> Q_\alpha = \frac{\sigma_\alpha}{\sigma_\text{geom}}, \qquad \alpha = \text{ext}, \text{sc}, \text{abs}. </math> The cross section is defined by : <math> \sigma_\alpha = \frac{W_\alpha}{I_{\text{inc}}} </math> where <math>\left[W_\alpha \right] = \left[ \text{W} \right]</math> is the energy flow through the surrounding surface, and <math> \left[I_{\text{inc}}\right] = \left[ \frac{\text{W}}{\text{m}^2} \right]</math> is the intensity of the incident wave. For a [[plane wave]] the intensity is going to be <math>I_{\text{inc}} = |\mathbf{E}|^2 / (2 \eta)</math>, where <math>\eta = \sqrt{\mu \mu_0 / (\varepsilon \varepsilon_0)}</math> is the [[Impedance of free space|impedance of the host medium]]. The main approach is based on the following. Firstly, we construct an imaginary sphere of radius <math>r</math> (surface <math>A</math>) around the particle (the scatterer). The net rate of electromagnetic energy crosses the surface <math>A</math> is : <math> W_\text{a} = - \oint_A \mathbf{\Pi} \cdot \hat{\mathbf{r}} dA </math> where <math display="inline">\mathbf{\Pi} = \frac{1}{2} \operatorname{Re} \left[ \mathbf{E}^* \times \mathbf{H} \right]</math> is the time averaged Poynting vector. If <math>W_\text{a} > 0</math> energy is absorbed within the sphere, otherwise energy is being created within the sphere. We will not consider this case here. If the host medium is non-absorbing, the energy must be absorbed by the particle. We decompose the total field into incident and scattered parts <math>\mathbf{E} = \mathbf{E}_\text{i} + \mathbf{E}_\text{s}</math>, and the same for the magnetic field <math>\mathbf{H}</math>. Thus, we can decompose <math>W_a</math> into the three terms <math> W_\text{a} = W_\text{i} - W_\text{s} + W_{\text{ext}} </math>, where : <math> W_\text{i} = - \oint_A \mathbf{\Pi}_\text{i} \cdot \hat{\mathbf{r}} dA \equiv 0, \qquad W_\text{s} = \oint_A \mathbf{\Pi}_\text{s} \cdot \hat{\mathbf{r}} dA, \qquad W_{\text{ext}} = \oint_A \mathbf{\Pi}_{\text{ext}} \cdot \hat{\mathbf{r}} dA. </math> where <math>\mathbf{\Pi}_\text{i} = \frac{1}{2} \operatorname{Re} \left[ \mathbf{E}_\text{i}^* \times \mathbf{H}_\text{i} \right] </math>, <math>\mathbf{\Pi}_\text{s} = \frac{1}{2} \operatorname{Re} \left[ \mathbf{E}_\text{s}^* \times \mathbf{H}_\text{s} \right] </math>, and <math>\mathbf{\Pi}_{\text{ext}} = \frac{1}{2} \operatorname{Re} \left[ \mathbf{E}_s^* \times \mathbf{H}_i + \mathbf{E}_i^* \times \mathbf{H}_s \right] </math>. All the field can be decomposed into the series of [[Vector spherical harmonics|vector spherical harmonics (VSH)]]. After that, all the integrals can be taken. In the case of a '''uniform sphere''' of radius <math>a</math>, permittivity <math>\varepsilon</math>, and permeability <math>\mu</math>, the problem has a precise solution.<ref>Bohren, Craig F., and Donald R. Huffman. Absorption and scattering of light by small particles. John Wiley & Sons, 2008.</ref> The scattering and extinction coefficients are <math display="block"> Q_\text{sc} = \frac{2}{k^2a^2}\sum_{n=1}^\infty (2n+1)(|a_{n}|^2+|b_{n}|^2) </math> <math display="block"> Q_\text{ext} = \frac{2}{k^2a^2}\sum_{n=1}^\infty (2n+1)\Re(a_{n}+b_{n}) </math> Where <math display="inline">k = n_\text{host} k_0</math>. These are connected as <math display="block"> \sigma_\text{ext} = \sigma_\text{sc} + \sigma_\text{abs} \qquad \text{or} \qquad Q_\text{ext} = Q_\text{sc} + Q_\text{abs} </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cross section (physics)
(section)
Add topic