Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Corrosion
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Pitting corrosion === {{Main|Pitting corrosion}} [[File:Pitting corrosion-scheme.png|thumb|upright|Diagram showing cross-section of pitting corrosion]] Certain conditions, such as low concentrations of oxygen or high concentrations of species such as chloride which compete as [[anion]]s, can interfere with a given alloy's ability to re-form a passivating film. In the worst case, almost all of the surface will remain protected, but tiny local fluctuations will degrade the oxide film in a few critical points. Corrosion at these points will be greatly amplified, and can cause ''corrosion pits'' of several types, depending upon conditions. While the corrosion pits only [[nucleation|nucleate]] under fairly extreme circumstances, they can continue to grow even when conditions return to normal, since the interior of a pit is naturally deprived of oxygen and locally the pH decreases to very low values and the corrosion rate increases due to an autocatalytic process. In extreme cases, the sharp tips of extremely long and narrow corrosion pits can cause [[stress concentration]] to the point that otherwise tough alloys can shatter; a thin film pierced by an invisibly small hole can hide a thumb sized pit from view. These problems are especially dangerous because they are difficult to detect before a part or structure [[structural failure|fails]]. Pitting remains among the most common and damaging forms of corrosion in passivated alloys,<ref>{{cite web|url= https://www.corrosionclinic.com/types_of_corrosion/pitting_corrosion.htm|title= Different Types of Corrosion: Pitting Corrosion - Causes and Prevention|author= <!--Not stated-->|date= |website= corrosionclinic.com|publisher= WebCorr Corrosion Consulting Services|access-date= 2022-09-13|quote= |archive-date= 2022-09-13|archive-url= https://web.archive.org/web/20220913050419/https://www.corrosionclinic.com/types_of_corrosion/pitting_corrosion.htm|url-status= live}}</ref> but it can be prevented by control of the alloy's environment. Pitting results when a small hole, or cavity, forms in the metal, usually as a result of de-passivation of a small area. This area becomes anodic, while part of the remaining metal becomes cathodic, producing a localized galvanic reaction. The deterioration of this small area penetrates the metal and can lead to failure. This form of corrosion is often difficult to detect because it is usually relatively small and may be covered and hidden by corrosion-produced compounds.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Corrosion
(section)
Add topic