Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cauchy–Schwarz inequality
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Applications == === Analysis === In any [[inner product space]], the [[triangle inequality]] is a consequence of the Cauchy–Schwarz inequality, as is now shown: <math display="block">\begin{alignat}{4} \|\mathbf{u} + \mathbf{v}\|^2 &= \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle && \\ &= \|\mathbf{u}\|^2 + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \|\mathbf{v}\|^2 ~ && ~ \text{ where } \langle \mathbf{v}, \mathbf{u} \rangle = \overline{\langle \mathbf{u}, \mathbf{v} \rangle} \\ &= \|\mathbf{u}\|^2 + 2 \operatorname{Re} \langle \mathbf{u}, \mathbf{v} \rangle + \|\mathbf{v}\|^2 && \\ &\leq \|\mathbf{u}\|^2 + 2|\langle \mathbf{u}, \mathbf{v} \rangle| + \|\mathbf{v}\|^2 && \\ &\leq \|\mathbf{u}\|^2 + 2\|\mathbf{u}\|\|\mathbf{v}\| + \|\mathbf{v}\|^2 ~ && ~ \text{ using CS}\\ &=\bigl(\|\mathbf{u}\| + \|\mathbf{v}\|\bigr)^2. && \end{alignat}</math> Taking square roots gives the triangle inequality: <math display=block>\|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\|.</math> The Cauchy–Schwarz inequality is used to prove that the inner product is a [[continuous function]] with respect to the [[topology]] induced by the inner product itself.<ref>{{cite book|last1=Bachman|first1=George|last2=Narici|first2=Lawrence|date=2012-09-26|title=Functional Analysis|publisher=Courier Corporation|isbn=9780486136554|pages=141|url=https://books.google.com/books?id=_lTDAgAAQBAJ}}</ref><ref>{{cite book|last=Swartz|first=Charles|date=1994-02-21|title=Measure, Integration and Function Spaces|publisher=World Scientific|isbn=9789814502511|pages=236|url=https://books.google.com/books?id=SsbsCgAAQBAJ}}</ref> === Geometry === The Cauchy–Schwarz inequality allows one to extend the notion of "angle between two vectors" to any [[real numbers|real]] inner-product space by defining:<ref>{{cite book|last=Ricardo|first=Henry|date=2009-10-21|title=A Modern Introduction to Linear Algebra|publisher=CRC Press|isbn=9781439894613|pages=18|url=https://books.google.com/books?id=s7bMBQAAQBAJ}}</ref><ref>{{cite book|last1=Banerjee|first1=Sudipto|last2=Roy|first2=Anindya|date=2014-06-06|title=Linear Algebra and Matrix Analysis for Statistics|publisher=CRC Press|isbn=9781482248241|pages=181|url=https://books.google.com/books?id=WDTcBQAAQBAJ}}</ref> <math display=block>\cos\theta_{\mathbf{u} \mathbf{v}} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}.</math> The Cauchy–Schwarz inequality proves that this definition is sensible, by showing that the right-hand side lies in the interval {{math|[−1, 1]}} and justifies the notion that (real) [[Hilbert space]]s are simply generalizations of the [[Euclidean space]]. It can also be used to define an angle in [[complex numbers|complex]] [[inner-product space]]s, by taking the absolute value or the real part of the right-hand side,<ref>{{cite book|last=Valenza|first=Robert J.|date=2012-12-06|title=Linear Algebra: An Introduction to Abstract Mathematics|publisher=Springer Science & Business Media|isbn=9781461209010|pages=146|url=https://books.google.com/books?id=7x8MCAAAQBAJ}}</ref><ref>{{cite book|last=Constantin|first=Adrian|date=2016-05-21|title=Fourier Analysis with Applications|publisher=Cambridge University Press|isbn=9781107044104|pages=74|url=https://books.google.com/books?id=JnMZDAAAQBAJ}}</ref> as is done when extracting a metric from [[Fidelity of quantum states|quantum fidelity]]. === Probability theory === <!-- For the multivariate case,{{clarify|reason=define GE operator here|date=July 2011}}<ref>{{cite journal| last=Gautam|first=Tripathi|title=A matrix extension of the Cauchy–Schwarz inequality|journal=Economics Letters|date=4 December 1998|url=http://web2.uconn.edu/tripathi/published-papers/cs.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://web2.uconn.edu/tripathi/published-papers/cs.pdf |archive-date=2022-10-09 |url-status=live|doi=10.1016/s0165-1765(99)00014-2}}</ref> <math display=block>\operatorname{Var}(Y) \geq \operatorname{Cov} (Y, X) \operatorname{Var}^{-1}(X) \operatorname{Cov}(X, Y)</math> This inequality means that the difference is semidefinite positive. --> Let <math>X</math> and <math>Y</math> be [[random variable]]s. Then the covariance inequality<ref>{{cite book|last=Mukhopadhyay|first=Nitis|date=2000-03-22|title=Probability and Statistical Inference|publisher=CRC Press|isbn=9780824703790|pages=150|url=https://books.google.com/books?id=TMSnGkr_DxwC}}</ref><ref>{{cite book|last=Keener|first=Robert W.|date=2010-09-08|title=Theoretical Statistics: Topics for a Core Course|publisher=Springer Science & Business Media|isbn=9780387938394|pages=71|url=https://books.google.com/books?id=aVJmcega44cC}}</ref> is given by: <math display=block>\operatorname{Var}(X) \geq \frac{\operatorname{Cov}(X, Y)^2}{\operatorname{Var}(Y)}.</math> After defining an inner product on the set of random variables using the expectation of their product, <math display=block>\langle X, Y \rangle := \operatorname{E}(X Y),</math> the Cauchy–Schwarz inequality becomes <math display=block>\bigl|\operatorname{E}(XY)\bigr|^2 \leq \operatorname{E}(X^2) \operatorname{E}(Y^2).</math> To prove the covariance inequality using the Cauchy–Schwarz inequality, let <math>\mu = \operatorname{E}(X)</math> and <math>\nu = \operatorname{E}(Y),</math> then <math display=block>\begin{align} \bigl|\operatorname{Cov}(X, Y)\bigr|^2 &= \bigl|\operatorname{E}((X - \mu)(Y - \nu))\bigr|^2 \\ &= \bigl|\langle X - \mu, Y - \nu \rangle \bigr|^2\\ &\leq \langle X - \mu, X - \mu \rangle \langle Y - \nu, Y - \nu \rangle \\ & = \operatorname{E}\left((X - \mu)^2\right) \operatorname{E}\left((Y - \nu)^2\right) \\ & = \operatorname{Var}(X) \operatorname{Var}(Y), \end{align}</math> where <math>\operatorname{Var}</math> denotes [[variance]] and <math>\operatorname{Cov}</math> denotes [[covariance]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cauchy–Schwarz inequality
(section)
Add topic