Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Carbon cycle
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Terrestrial carbon in the water cycle === [[File:Where carbon goes when water flows.jpg|thumb|upright=2| {{center|Where terrestrial carbon goes when water flows{{hsp}}<ref name=Ward2017>{{cite journal |last1=Ward |first1=Nicholas D. |last2=Bianchi |first2=Thomas S. |last3=Medeiros |first3=Patricia M. |last4=Seidel |first4=Michael |last5=Richey |first5=Jeffrey E. |last6=Keil |first6=Richard G. |last7=Sawakuchi |first7=Henrique O. |title=Where Carbon Goes When Water Flows: Carbon Cycling across the Aquatic Continuum |journal=Frontiers in Marine Science |date=31 January 2017 |volume=4 |doi=10.3389/fmars.2017.00007 |doi-access=free }}{{Creative Commons text attribution notice|cc=by4|url=|author(s)=|vrt=|from this source=yes}}</ref>}}]] The movement of terrestrial carbon in the water cycle is shown in the diagram on the right and explained below:{{hsp}}<ref name=Ward2017 /> # Atmospheric particles act as [[cloud condensation nuclei]], promoting cloud formation.<ref name=Kerminen2000>{{cite journal |last1=Kerminen |first1=Veli-Matti |last2=Virkkula |first2=Aki |last3=Hillamo |first3=Risto |last4=Wexler |first4=Anthony S. |last5=Kulmala |first5=Markku |title=Secondary organics and atmospheric cloud condensation nuclei production |journal=Journal of Geophysical Research: Atmospheres |date=16 April 2000 |volume=105 |issue=D7 |pages=9255–9264 |doi=10.1029/1999JD901203 |bibcode=2000JGR...105.9255K }}</ref><ref name=Riipinen2011>{{cite journal |last1=Riipinen |first1=I. |last2=Pierce |first2=J. R. |last3=Yli-Juuti |first3=T. |last4=Nieminen |first4=T. |last5=Häkkinen |first5=S. |last6=Ehn |first6=M. |last7=Junninen |first7=H. |last8=Lehtipalo |first8=K. |last9=Petäjä |first9=T. |last10=Slowik |first10=J. |last11=Chang |first11=R. |last12=Shantz |first12=N. C. |last13=Abbatt |first13=J. |last14=Leaitch |first14=W. R. |last15=Kerminen |first15=V.-M. |last16=Worsnop |first16=D. R. |last17=Pandis |first17=S. N. |last18=Donahue |first18=N. M. |last19=Kulmala |first19=M. |title=Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations |journal=Atmospheric Chemistry and Physics |date=27 April 2011 |volume=11 |issue=8 |pages=3865–3878 |doi=10.5194/acp-11-3865-2011 |doi-access=free |bibcode=2011ACP....11.3865R }}</ref> #Raindrops absorb [[organic carbon|organic]] and [[inorganic carbon]] through particle scavenging and adsorption of organic vapors while falling toward Earth.<ref name=Waterloo2006>{{cite journal |last1=Waterloo |first1=Maarten J. |last2=Oliveira |first2=Sylvia M. |last3=Drucker |first3=Debora P. |last4=Nobre |first4=Antonio D. |last5=Cuartas |first5=Luz A. |last6=Hodnett |first6=Martin G. |last7=Langedijk |first7=Ivar |last8=Jans |first8=Wilma W. P. |last9=Tomasella |first9=Javier |last10=de Araújo |first10=Alessandro C. |last11=Pimentel |first11=Tania P. |last12=Múnera Estrada |first12=Juan C. |title=Export of organic carbon in run-off from an Amazonian rainforest blackwater catchment |journal=Hydrological Processes |date=15 August 2006 |volume=20 |issue=12 |pages=2581–2597 |doi=10.1002/hyp.6217 |bibcode=2006HyPr...20.2581W }}</ref><ref name=Neu2016>{{cite journal |last1=Neu |first1=Vania |last2=Ward |first2=Nicholas D. |last3=Krusche |first3=Alex V. |last4=Neill |first4=Christopher |title=Dissolved Organic and Inorganic Carbon Flow Paths in an Amazonian Transitional Forest |journal=Frontiers in Marine Science |date=28 June 2016 |volume=3 |doi=10.3389/fmars.2016.00114 |doi-access=free }}</ref> #Burning and volcanic eruptions produce highly condensed [[Polycyclic aromatic hydrocarbon|polycyclic aromatic molecules]] (i.e. [[black carbon]]) that is returned to the atmosphere along with greenhouse gases such as CO<sub>2</sub>.<ref name=Baldock2004>{{cite journal |last1=Baldock |first1=J.A. |last2=Masiello |first2=C.A. |last3=Gélinas |first3=Y. |last4=Hedges |first4=J.I. |title=Cycling and composition of organic matter in terrestrial and marine ecosystems |journal=Marine Chemistry |date=December 2004 |volume=92 |issue=1–4 |pages=39–64 |doi=10.1016/j.marchem.2004.06.016 |bibcode=2004MarCh..92...39B }}</ref><ref name=Myers-Pigg2016>{{cite journal |last1=Myers-Pigg |first1=Allison N. |last2=Griffin |first2=Robert J. |last3=Louchouarn |first3=Patrick |last4=Norwood |first4=Matthew J. |last5=Sterne |first5=Amanda |last6=Cevik |first6=Basak Karakurt |title=Signatures of Biomass Burning Aerosols in the Plume of a Saltmarsh Wildfire in South Texas |journal=Environmental Science & Technology |date=6 September 2016 |volume=50 |issue=17 |pages=9308–9314 |doi=10.1021/acs.est.6b02132 |pmid=27462728 |bibcode=2016EnST...50.9308M }}</ref> #Terrestrial plants fix atmospheric CO<sub>2</sub> through [[photosynthesis]], returning a fraction back to the atmosphere through [[respiration (physiology)|respiration]].<ref name=Field1998>{{cite journal |last1=Field |first1=Christopher B. |last2=Behrenfeld |first2=Michael J. |last3=Randerson |first3=James T. |last4=Falkowski |first4=Paul |title=Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components |journal=Science |date=10 July 1998 |volume=281 |issue=5374 |pages=237–240 |doi=10.1126/science.281.5374.237 |pmid=9657713 |bibcode=1998Sci...281..237F |url=https://escholarship.org/uc/item/9gm7074q }}</ref> [[Lignin]] and [[cellulose]]s represent as much as 80% of the organic carbon in forests and 60% in pastures.<ref name=Martens2004>{{cite journal |last1=Martens |first1=Dean A. |last2=Reedy |first2=Thomas E. |last3=Lewis |first3=David T. |title=Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements |journal=Global Change Biology |date=January 2004 |volume=10 |issue=1 |pages=65–78 |doi=10.1046/j.1529-8817.2003.00722.x |bibcode=2004GCBio..10...65M |url=https://digitalcommons.unl.edu/agronomyfacpub/124 }}</ref><ref name=Bose2009>{{cite journal |last1=Bose |first1=Samar K. |last2=Francis |first2=Raymond C. |last3=Govender |first3=Mark |last4=Bush |first4=Tamara |last5=Spark |first5=Andrew |title=Lignin content versus syringyl to guaiacyl ratio amongst poplars |journal=Bioresource Technology |date=February 2009 |volume=100 |issue=4 |pages=1628–1633 |doi=10.1016/j.biortech.2008.08.046 |pmid=18954979 |bibcode=2009BiTec.100.1628B }}</ref> #[[Litterfall]] and root organic carbon mix with sedimentary material to form organic soils where plant-derived and petrogenic organic carbon is both stored and transformed by microbial and fungal activity.<ref name=Schlesinger2000>{{cite journal |last1=Schlesinger |first1=William H. |last2=Andrews |first2=Jeffrey A. |title=Soil respiration and the global carbon cycle |journal=Biogeochemistry |date=2000 |volume=48 |issue=1 |pages=7–20 |doi=10.1023/A:1006247623877 |bibcode=2000Biogc..48....7S }}</ref><ref name=Schmidt2011>{{cite journal |last1=Schmidt |first1=Michael W. I. |last2=Torn |first2=Margaret S. |last3=Abiven |first3=Samuel |last4=Dittmar |first4=Thorsten |last5=Guggenberger |first5=Georg |last6=Janssens |first6=Ivan A. |last7=Kleber |first7=Markus |last8=Kögel-Knabner |first8=Ingrid |author8-link=Ingrid Kögel-Knabner|last9=Lehmann |first9=Johannes |last10=Manning |first10=David A. C. |last11=Nannipieri |first11=Paolo |last12=Rasse |first12=Daniel P. |last13=Weiner |first13=Steve |last14=Trumbore |first14=Susan E. |title=Persistence of soil organic matter as an ecosystem property |journal=Nature |date=October 2011 |volume=478 |issue=7367 |pages=49–56 |doi=10.1038/nature10386 |pmid=21979045 |bibcode=2011Natur.478...49S |url=https://digital.library.unt.edu/ark:/67531/metadc844476/ }}</ref><ref name=Lehmann2015>{{cite journal |last1=Lehmann |first1=Johannes |last2=Kleber |first2=Markus |title=The contentious nature of soil organic matter |journal=Nature |date=December 2015 |volume=528 |issue=7580 |pages=60–68 |doi=10.1038/nature16069 |pmid=26595271 |bibcode=2015Natur.528...60L }}</ref> #Water absorbs plant and settled aerosol-derived [[dissolved organic carbon]] (DOC) and [[dissolved inorganic carbon]] (DIC) as it passes over forest canopies (i.e. [[throughfall]]) and along plant trunks/stems (i.e. [[stemflow]]).<ref>{{cite journal |last1=Qualls |first1=Robert G. |last2=Haines |first2=Bruce L. |title=Biodegradability of Dissolved Organic Matter in Forest Throughfall, Soil Solution, and Stream Water |journal=Soil Science Society of America Journal |date=March 1992 |volume=56 |issue=2 |pages=578–586 |doi=10.2136/sssaj1992.03615995005600020038x |bibcode=1992SSASJ..56..578Q }}</ref> Biogeochemical transformations take place as water soaks into soil solution and groundwater reservoirs<ref name=Grøn1992>{{cite journal |last1=Grøn |first1=Christian |last2=Tørsløv |first2=Jens |last3=Albrechtsen |first3=Hans-Jørgen |last4=Jensen |first4=Hanne Møller |title=Biodegradability of dissolved organic carbon in groundwater from an unconfined aquifer |journal=Science of the Total Environment |date=May 1992 |volume=117-118 |pages=241–251 |doi=10.1016/0048-9697(92)90091-6 |bibcode=1992ScTEn.117..241G }}</ref><ref name=Pabich2001>{{cite journal |last1=Pabich |first1=Wendy J. |last2=Valiela |first2=Ivan |last3=Hemond |first3=Harold F. |title=Relationship between DOC concentration and vadose zone thickness and depth below water table in groundwater of Cape Cod, U.S.A. |journal=Biogeochemistry |date=2001 |volume=55 |issue=3 |pages=247–268 |doi=10.1023/A:1011842918260 |bibcode=2001Biogc..55..247P }}</ref> and [[overland flow]] occurs when soils are completely saturated,<ref name=Linsley1975>{{cite book |last1=Linsley |first1=Ray K. |title=Solutions Manual to Accompany Hydrology for Engineers |date=1975 |publisher=McGraw-Hill |oclc=24765393 }}{{pn|date=July 2024}}</ref> or rainfall occurs more rapidly than saturation into soils.<ref name=Horton1933>{{cite journal |title=The Rôle of infiltration in the hydrologic cycle |journal=Eos, Transactions American Geophysical Union |date=June 1933 |volume=14 |issue=1 |pages=446–460 |doi=10.1029/TR014i001p00446 |bibcode=1933TrAGU..14..446H |last1=Horton |first1=Robert E. }}</ref> #Organic carbon derived from the terrestrial biosphere and ''in situ'' [[primary production]] is decomposed by microbial communities in rivers and streams along with physical decomposition (i.e. [[photo-oxidation]]), resulting in a flux of CO<sub>2</sub> from rivers to the atmosphere that are the same order of magnitude as the amount of carbon sequestered annually by the terrestrial biosphere.<ref name=Richey2002>{{cite journal |last1=Richey |first1=Jeffrey E. |last2=Melack |first2=John M. |last3=Aufdenkampe |first3=Anthony K. |last4=Ballester |first4=Victoria M. |last5=Hess |first5=Laura L. |title=Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2 |journal=Nature |date=April 2002 |volume=416 |issue=6881 |pages=617–620 |doi=10.1038/416617a |pmid=11948346 }}</ref><ref name=Cole2007>{{cite journal |last1=Cole |first1=J. J. |last2=Prairie |first2=Y. T. |last3=Caraco |first3=N. F. |last4=McDowell |first4=W. H. |last5=Tranvik |first5=L. J. |last6=Striegl |first6=R. G. |last7=Duarte |first7=C. M. |last8=Kortelainen |first8=P. |last9=Downing |first9=J. A. |last10=Middelburg |first10=J. J. |last11=Melack |first11=J. |title=Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget |journal=Ecosystems |date=February 2007 |volume=10 |issue=1 |pages=172–185 |doi=10.1007/s10021-006-9013-8 |bibcode=2007Ecosy..10..172C }}</ref><ref name=Raymond2013>{{cite journal |last1=Raymond |first1=Peter A. |last2=Hartmann |first2=Jens |last3=Lauerwald |first3=Ronny |last4=Sobek |first4=Sebastian |last5=McDonald |first5=Cory |last6=Hoover |first6=Mark |last7=Butman |first7=David |last8=Striegl |first8=Robert |last9=Mayorga |first9=Emilio |last10=Humborg |first10=Christoph |last11=Kortelainen |first11=Pirkko |last12=Dürr |first12=Hans |last13=Meybeck |first13=Michel |last14=Ciais |first14=Philippe |last15=Guth |first15=Peter |title=Global carbon dioxide emissions from inland waters |journal=Nature |date=21 November 2013 |volume=503 |issue=7476 |pages=355–359 |doi=10.1038/nature12760 |pmid=24256802 |bibcode=2013Natur.503..355R |url=http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-213816 }}</ref> Terrestrially-derived macromolecules such as lignin{{hsp}}<ref name=Ward2013>{{cite journal |last1=Ward |first1=Nicholas D. |last2=Keil |first2=Richard G. |last3=Medeiros |first3=Patricia M. |last4=Brito |first4=Daimio C. |last5=Cunha |first5=Alan C. |last6=Dittmar |first6=Thorsten |last7=Yager |first7=Patricia L. |last8=Krusche |first8=Alex V. |last9=Richey |first9=Jeffrey E. |title=Degradation of terrestrially derived macromolecules in the Amazon River |journal=Nature Geoscience |date=July 2013 |volume=6 |issue=7 |pages=530–533 |doi=10.1038/ngeo1817 |bibcode=2013NatGe...6..530W }}</ref> and [[black carbon]]{{hsp}}<ref name=Myers-Pigg2015>{{cite journal |last1=Myers-Pigg |first1=Allison N. |last2=Louchouarn |first2=Patrick |last3=Amon |first3=Rainer M. W. |last4=Prokushkin |first4=Anatoly |last5=Pierce |first5=Kayce |last6=Rubtsov |first6=Alexey |title=Labile pyrogenic dissolved organic carbon in major Siberian Arctic rivers: Implications for wildfire-stream metabolic linkages |journal=Geophysical Research Letters |date=28 January 2015 |volume=42 |issue=2 |pages=377–385 |doi=10.1002/2014GL062762 |bibcode=2015GeoRL..42..377M |doi-access=free }}</ref> are decomposed into smaller components and [[monomer]]s, ultimately being converted to CO<sub>2</sub>, metabolic intermediates, or [[Biomass (ecology)|biomass]]. #Lakes, reservoirs, and [[floodplain]]s typically store large amounts of organic carbon and sediments, but also experience net [[heterotrophy]] in the water column, resulting in a net flux of CO<sub>2</sub> to the atmosphere that is roughly one order of magnitude less than rivers.<ref name=Tranvik2009>{{cite journal |last1=Tranvik |first1=Lars J. |last2=Downing |first2=John A. |last3=Cotner |first3=James B. |last4=Loiselle |first4=Steven A. |last5=Striegl |first5=Robert G. |last6=Ballatore |first6=Thomas J. |last7=Dillon |first7=Peter |last8=Finlay |first8=Kerri |last9=Fortino |first9=Kenneth |last10=Knoll |first10=Lesley B. |last11=Kortelainen |first11=Pirkko L. |last12=Kutser |first12=Tiit |last13=Larsen |first13=Soren. |last14=Laurion |first14=Isabelle |last15=Leech |first15=Dina M. |last16=McCallister |first16=S. Leigh |last17=McKnight |first17=Diane M. |last18=Melack |first18=John M. |last19=Overholt |first19=Erin |last20=Porter |first20=Jason A. |last21=Prairie |first21=Yves |last22=Renwick |first22=William H. |last23=Roland |first23=Fabio |last24=Sherman |first24=Bradford S. |last25=Schindler |first25=David W. |last26=Sobek |first26=Sebastian |last27=Tremblay |first27=Alain |last28=Vanni |first28=Michael J. |last29=Verschoor |first29=Antonie M. |last30=von Wachenfeldt |first30=Eddie |last31=Weyhenmeyer |first31=Gesa A. |title=Lakes and reservoirs as regulators of carbon cycling and climate |journal=Limnology and Oceanography |date=November 2009 |volume=54 |issue=6part2 |pages=2298–2314 |doi=10.4319/lo.2009.54.6_part_2.2298 |bibcode=2009LimOc..54.2298T }}</ref><ref name=Raymond2013 /> Methane production is also typically high in the [[anoxic waters|anoxic]] sediments of floodplains, lakes, and reservoirs.<ref name=Bastviken2004>{{cite journal |last1=Bastviken |first1=David |last2=Cole |first2=Jonathan |last3=Pace |first3=Michael |last4=Tranvik |first4=Lars |title=Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate |journal=Global Biogeochemical Cycles |date=December 2004 |volume=18 |issue=4 |doi=10.1029/2004GB002238 |bibcode=2004GBioC..18.4009B }}</ref> #Primary production is typically enhanced in [[river plume]]s due to the export of [[fluvial]] nutrients.<ref name=Cooley2007>{{cite journal |last1=Cooley |first1=S. R. |last2=Coles |first2=V. J. |last3=Subramaniam |first3=A. |last4=Yager |first4=P. L. |title=Seasonal variations in the Amazon plume-related atmospheric carbon sink |journal=Global Biogeochemical Cycles |date=September 2007 |volume=21 |issue=3 |doi=10.1029/2006GB002831 |bibcode=2007GBioC..21.3014C }}</ref><ref name=Subramaniam2008>{{cite journal |last1=Subramaniam |first1=A. |last2=Yager |first2=P. L. |last3=Carpenter |first3=E. J. |last4=Mahaffey |first4=C. |last5=Björkman |first5=K. |last6=Cooley |first6=S. |last7=Kustka |first7=A. B. |last8=Montoya |first8=J. P. |last9=Sañudo-Wilhelmy |first9=S. A. |last10=Shipe |first10=R. |last11=Capone |first11=D. G. |title=Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean |journal=Proceedings of the National Academy of Sciences |date=29 July 2008 |volume=105 |issue=30 |pages=10460–10465 |doi=10.1073/pnas.0710279105 |doi-access=free |pmid=18647838 |pmc=2480616 }}</ref> Nevertheless, [[estuarine]] waters are a source of CO<sub>2</sub> to the atmosphere, globally.<ref name=Cai2011>{{cite journal |last1=Cai |first1=Wei-Jun |title=Estuarine and Coastal Ocean Carbon Paradox: CO 2 Sinks or Sites of Terrestrial Carbon Incineration? |journal=Annual Review of Marine Science |date=15 January 2011 |volume=3 |issue=1 |pages=123–145 |doi=10.1146/annurev-marine-120709-142723 |pmid=21329201 |bibcode=2011ARMS....3..123C }}</ref> #[[Coastal marsh]]es both store and export [[blue carbon]].<ref name=Odum1979>{{cite book |doi=10.1007/978-1-4615-9146-7 |title=Ecological Processes in Coastal and Marine Systems |date=1979 |isbn=978-1-4615-9148-1 |editor-last1=Livingston |editor-first1=Robert J. }}{{pn|date=July 2024}}</ref><ref name=Dittmar2001>{{cite journal |last1=Dittmar |first1=Thorsten |last2=Lara |first2=Rubén José |last3=Kattner |first3=Gerhard |title=River or mangrove? Tracing major organic matter sources in tropical Brazilian coastal waters |journal=Marine Chemistry |date=March 2001 |volume=73 |issue=3–4 |pages=253–271 |doi=10.1016/s0304-4203(00)00110-9 |bibcode=2001MarCh..73..253D }}</ref><ref name=Moore2011>{{cite journal |last1=Moore |first1=W.S. |last2=Beck |first2=M. |last3=Riedel |first3=T. |last4=Rutgers van der Loeff |first4=M. |last5=Dellwig |first5=O. |last6=Shaw |first6=T.J. |last7=Schnetger |first7=B. |last8=Brumsack |first8=H.-J. |title=Radium-based pore water fluxes of silica, alkalinity, manganese, DOC, and uranium: A decade of studies in the German Wadden Sea |journal=Geochimica et Cosmochimica Acta |date=November 2011 |volume=75 |issue=21 |pages=6535–6555 |doi=10.1016/j.gca.2011.08.037 |bibcode=2011GeCoA..75.6535M }}</ref> [[Marsh]]es and [[wetland]]s are suggested to have an equivalent flux of CO<sub>2</sub> to the atmosphere as rivers, globally.<ref name=Wehrli2013>{{cite journal |last1=Wehrli |first1=Bernhard |title=Conduits of the carbon cycle |journal=Nature |date=November 2013 |volume=503 |issue=7476 |pages=346–347 |doi=10.1038/503346a |pmid=24256800 }}</ref> #[[Continental shelves]] and the [[open ocean]] typically absorb CO<sub>2</sub> from the atmosphere.<ref name=Cai2011 /> #The marine [[biological pump]] sequesters a small but significant fraction of the absorbed CO<sub>2</sub> as organic carbon in [[marine sediment]]s ([[#The marine biological pump|see below]]).<ref name=Moran2016>{{cite journal |last1=Moran |first1=Mary Ann |last2=Kujawinski |first2=Elizabeth B. |last3=Stubbins |first3=Aron |last4=Fatland |first4=Rob |last5=Aluwihare |first5=Lihini I. |last6=Buchan |first6=Alison |last7=Crump |first7=Byron C. |last8=Dorrestein |first8=Pieter C. |last9=Dyhrman |first9=Sonya T. |last10=Hess |first10=Nancy J. |last11=Howe |first11=Bill |last12=Longnecker |first12=Krista |last13=Medeiros |first13=Patricia M. |last14=Niggemann |first14=Jutta |last15=Obernosterer |first15=Ingrid |last16=Repeta |first16=Daniel J. |last17=Waldbauer |first17=Jacob R. |title=Deciphering ocean carbon in a changing world |journal=Proceedings of the National Academy of Sciences |date=22 March 2016 |volume=113 |issue=12 |pages=3143–3151 |doi=10.1073/pnas.1514645113 |doi-access=free |pmid=26951682 |pmc=4812754 |bibcode=2016PNAS..113.3143M }}</ref><ref name=Ward2017 /> {{clear}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Carbon cycle
(section)
Add topic