Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Calculus of variations
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Lavrentiev phenomenon == Hilbert was the first to give good conditions for the Euler–Lagrange equations to give a stationary solution. Within a convex area and a positive thrice differentiable Lagrangian the solutions are composed of a countable collection of sections that either go along the boundary or satisfy the Euler–Lagrange equations in the interior. However [[Mikhail Lavrentyev|Lavrentiev]] in 1926 showed that there are circumstances where there is no optimum solution but one can be approached arbitrarily closely by increasing numbers of sections. The Lavrentiev Phenomenon identifies a difference in the infimum of a minimization problem across different classes of admissible functions. For instance the following problem, presented by Manià in 1934:<ref>{{Cite journal|last=Manià|first=Bernard|date=1934|title=Sopra un esempio di Lavrentieff| journal=Bollenttino dell'Unione Matematica Italiana|volume=13|pages=147–153}}</ref> <math display="block">L[x] = \int_0^1 (x^3-t)^2 x'^6,</math> <math display="block">{A} = \{x \in W^{1,1}(0,1) : x(0)=0,\ x(1)=1\}.</math> Clearly, <math>x(t) = t^{\frac{1}{3}}</math>minimizes the functional, but we find any function <math>x \in W^{1, \infty}</math> gives a value bounded away from the infimum. Examples (in one-dimension) are traditionally manifested across <math>W^{1,1}</math> and <math>W^{1,\infty},</math> but Ball and Mizel<ref>{{Cite journal|last=Ball & Mizel|date=1985|title=One-dimensional Variational problems whose Minimizers do not satisfy the Euler-Lagrange equation.|journal=Archive for Rational Mechanics and Analysis|volume=90|issue=4|pages=325–388| doi=10.1007/BF00276295|bibcode=1985ArRMA..90..325B|s2cid=55005550}}</ref> procured the first functional that displayed Lavrentiev's Phenomenon across <math>W^{1,p}</math> and <math>W^{1,q}</math> for <math>1 \leq p < q < \infty.</math> There are several results that gives criteria under which the phenomenon does not occur - for instance 'standard growth', a Lagrangian with no dependence on the second variable, or an approximating sequence satisfying Cesari's Condition (D) - but results are often particular, and applicable to a small class of functionals. Connected with the Lavrentiev Phenomenon is the repulsion property: any functional displaying Lavrentiev's Phenomenon will display the weak repulsion property.<ref>{{Cite journal|last=Ferriero|first=Alessandro|date=2007|title=The Weak Repulsion property | journal=Journal de Mathématiques Pures et Appliquées|volume=88|issue=4|pages=378–388| doi=10.1016/j.matpur.2007.06.002 | doi-access=}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Calculus of variations
(section)
Add topic