Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bipyramid
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== 4-polytopes with bipyramidal cells == The [[Dual polyhedron#Dual polytopes and tessellations|dual]] of the [[Rectification (geometry)|rectification]] of each [[convex regular 4-polytope]]s is a [[cell-transitive]] [[4-polytope]] with bipyramidal cells. In the following: *{{mvar|A}} is the apex vertex of the bipyramid; *{{mvar|E}} is an equator vertex; *{{overline|{{mvar|EE}}}} is the distance between adjacent vertices on the equator (equal to 1); *{{overline|{{mvar|AE}}}} is the apex-to-equator edge length; *{{overline|{{mvar|AA}}}} is the distance between the apices. The bipyramid 4-polytope will have {{mvar|V<sub>A</sub>}} vertices where the apices of {{mvar|N<sub>A</sub>}} bipyramids meet. It will have {{mvar|V<sub>E</sub>}} vertices where the type {{mvar|E}} vertices of {{mvar|N<sub>E</sub>}} bipyramids meet. *{{tmath|N_\overline{AE} }} bipyramids meet along each type {{overline|{{mvar|AE}}}} edge. *{{tmath|N_\overline{EE} }} bipyramids meet along each type {{overline|{{mvar|EE}}}} edge. *{{tmath|C_\overline{AE} }} is the cosine of the [[dihedral angle]] along an {{overline|{{mvar|AE}}}} edge. *{{tmath|C_\overline{EE} }} is the cosine of the dihedral angle along an {{overline|{{mvar|EE}}}} edge. As cells must fit around an edge, <math display=block>\begin{align} N_\overline{EE} \arccos C_\overline{EE} &\le 2\pi, \\[4pt] N_\overline{AE} \arccos C_\overline{AE} &\le 2\pi. \end{align}</math> {| class=wikitable |+ style="text-align:center;"|4-polytopes with bipyramidal cells !colspan=9| 4-polytope properties !colspan=6| Bipyramid properties |- align=center ! Dual of <br> rectified <br> polytope ! [[Coxeter–Dynkin diagram|Coxeter<br>diagram]] ! Cells ! {{mvar|V<sub>A</sub>}} ! {{mvar|V<sub>E</sub>}} ! {{mvar|N<sub>A</sub>}} ! {{mvar|N<sub>E</sub>}} ! style="padding:0.2em;" | {{tmath|N_\overline{\!AE} }} ! style="padding:0.2em;" | {{tmath|N_\overline{\!EE} }} ! Bipyramid <br> cell ! Coxeter<br>diagram ! {{overline|{{mvar|AA}}}} ! {{overline|{{mvar|AE}}}}{{efn|Given numerically due to more complex form.}} ! {{tmath|C_\overline{AE} }} ! {{tmath|C_\overline{EE} }} |- align=center | [[Rectified 5-cell|R. 5-cell]] | {{CDD|node|3|node_f1|3|node|3|node}} | 10 | 5 | 5 | 4 | 6 | 3 | 3 | [[Triangular bipyramid|Triangular]] | {{CDD|node_f1|2x|node_f1|3|node}} | <math display=inline>\frac23</math> | 0.667 | <math display=inline>-\frac17</math> | <math display=inline>-\frac17</math> |- align=center | [[Rectified tesseract|R. tesseract]] | {{CDD|node|4|node_f1|3|node|3|node}} | 32 | 16 | 8 | 4 | 12 | 3 | 4 | [[Triangular bipyramid|Triangular]] | {{CDD|node_f1|2x|node_f1|3|node}} | <math display=inline>\frac{\sqrt{2}}{3}</math> | 0.624 | <math display=inline>-\frac25</math> | <math display=inline>-\frac15</math> |- align=center | [[Rectified 24-cell|R. 24-cell]] | {{CDD|node|3|node_f1|4|node|3|node}} | 96 | 24 | 24 | 8 | 12 | 4 | 3 | [[Triangular bipyramid|Triangular]] | {{CDD|node_f1|2x|node_f1|3|node}} | <math display=inline>\frac{2 \sqrt{2}}{3}</math> | 0.745 | <math display=inline>\frac1{11}</math> | <math display=inline>-\frac5{11}</math> |- align=center | [[Rectified 120-cell|R. 120-cell]] | {{CDD|node|5|node_f1|3|node|3|node}} | 1200 | 600 | 120 | 4 | 30 | 3 | 5 | [[Triangular bipyramid|Triangular]] | {{CDD|node_f1|2x|node_f1|3|node}} | <math display=inline>\frac{\sqrt{5} - 1}{3}</math> | 0.613 | <math display=inline>- \frac{10 + 9\sqrt{5}}{61}</math> | <math display=inline>- \frac{7 - 12\sqrt{5}}{61}</math> |- align=center | [[24-cell|R. 16-cell]] | {{CDD|node|3|node_f1|3|node|4|node}} | 24{{efn|The rectified 16-cell is the regular 24-cell and vertices are all equivalent – octahedra are regular bipyramids.}} | 8 | 16 | 6 | 6 | 3 | 3 | [[Square bipyramid|Square]] | {{CDD|node_f1|2x|node_f1|4|node}} | <math display=inline>\sqrt{2}</math> | 1 | <math display=inline>-\frac13</math> | <math display=inline>-\frac13</math> |- align=center | [[Rectified cubic honeycomb|R. cubic <br> honeycomb]] | {{CDD|node|4|node_f1|3|node|4|node}} | ∞ | ∞ | ∞ | 6 | 12 | 3 | 4 | [[Square bipyramid|Square]] | {{CDD|node_f1|2x|node_f1|4|node}} | <math display=inline>1</math> | 0.866 | <math display=inline>-\frac12</math> | <math display=inline>0</math> |- align=center | [[Rectified 600-cell|R. 600-cell]] | {{CDD|node|3|node_f1|3|node|5|node}} | 720 | 120 | 600 | 12 | 6 | 3 | 3 | [[Pentagonal bipyramid|Pentagonal]] | {{CDD|node_f1|2x|node_f1|5|node}} | <math display=inline>\frac{5 + 3\sqrt{5}}{5}</math> | 1.447 | <math display=inline>- \frac{11 + 4\sqrt{5}}{41}</math> | <math display=inline>- \frac{11 + 4\sqrt{5}}{41}</math> |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bipyramid
(section)
Add topic