Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Arrow's impossibility theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Formal statement === Let <math>A</math> be a set of ''alternatives''. A voter's [[preference (economics)|preferences]] over <math>A</math> are a [[Connected relation|complete]] and [[Transitive relation|transitive]] [[binary relation]] on <math>A</math> (sometimes called a [[total preorder]]), that is, a subset <math>R</math> of <math>A \times A</math> satisfying: # (Transitivity) If <math>(\mathbf{a}, \mathbf{b})</math> is in <math>R</math> and <math>(\mathbf{b}, \mathbf{c})</math> is in <math>R</math>, then <math>(\mathbf{a}, \mathbf{c})</math> is in <math>R</math>, # (Completeness) At least one of <math>(\mathbf{a}, \mathbf{b})</math> or <math>(\mathbf{b}, \mathbf{a})</math> must be in <math>R</math>. The element <math>(\mathbf{a}, \mathbf{b})</math> being in <math>R</math> is interpreted to mean that alternative <math>\mathbf{a}</math> is preferred to alternative <math>\mathbf{b}</math>. This situation is often denoted <math>\mathbf{a} \succ \mathbf{b}</math> or <math>\mathbf{a}R\mathbf{b}</math>. Denote the set of all preferences on <math>A</math> by <math>\Pi(A)</math>. Let <math>N</math> be a positive integer. An [[Ranked voting|''ordinal (ranked)'']] ''social welfare function'' is a function<ref name="Arrow1950"/> : <math> \mathrm{F} : \Pi(A)^N \to \Pi(A) </math> which aggregates voters' preferences into a single preference on <math>A</math>. An <math>N</math>-[[tuple]] <math>(R_1, \ldots, R_N) \in \Pi(A)^N</math> of voters' preferences is called a ''preference profile''. '''Arrow's impossibility theorem''': If there are at least three alternatives, then there is no social welfare function satisfying all three of the conditions listed below:<ref name="Gean">{{cite journal |last=Geanakoplos |first=John |year=2005 |title=Three Brief Proofs of Arrow's Impossibility Theorem |url=https://cowles.yale.edu/sites/default/files/files/pub/d11/d1123-r4.pdf |url-status=live |journal=[[Economic Theory (journal)|Economic Theory]] |volume=26 |issue=1 |pages=211β215 |citeseerx=10.1.1.193.6817 |doi=10.1007/s00199-004-0556-7 |jstor=25055941 |s2cid=17101545 |archive-url=https://ghostarchive.org/archive/20221009/https://cowles.yale.edu/sites/default/files/files/pub/d11/d1123-r4.pdf |archive-date=2022-10-09}}</ref> ; [[Pareto efficiency]] : If alternative <math>\mathbf{a}</math> is preferred to <math>\mathbf{b}</math> for all orderings <math>R_1, \ldots, R_N</math>, then <math>\mathbf{a}</math> is preferred to <math>\mathbf{b}</math> by <math>F(R_1, R_2, \ldots, R_N)</math>.<ref name="Arrow1950" /> ; [[Dictatorship mechanism|Non-dictatorship]] : There is no individual <math>i</math> whose preferences always prevail. That is, there is no <math>i \in \{1, \ldots, N\}</math> such that for all <math>(R_1, \ldots, R_N) \in \Pi(A)^N</math> and all <math>\mathbf{a}</math> and <math>\mathbf{b}</math>, when <math>\mathbf{a}</math> is preferred to <math>\mathbf{b}</math> by <math>R_i</math> then <math>\mathbf{a}</math> is preferred to <math>\mathbf{b}</math> by <math>F(R_1, R_2, \ldots, R_N)</math>.<ref name="Arrow1950" /> ; [[Independence of irrelevant alternatives]] : For two preference profiles <math>(R_1, \ldots, R_N)</math> and <math>(S_1, \ldots, S_N)</math> such that for all individuals <math>i</math>, alternatives <math>\mathbf{a}</math> and <math>\mathbf{b}</math> have the same order in <math>R_i</math> as in <math>S_i</math>, alternatives <math>\mathbf{a}</math> and <math>\mathbf{b}</math> have the same order in <math>F(R_1, \ldots, R_N)</math> as in <math>F(S_1, \ldots, S_N)</math>.<ref name="Arrow1950" />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Arrow's impossibility theorem
(section)
Add topic