Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Accessory fruit
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Research == Current research has proposed that a single class of [[gene]]s may be responsible for regulating accessory fruit formation and ripening.<ref>{{cite journal |last1=Ireland |first1=Hilary |last2=Yao |first2=Jia-Long |last3=Tomes |first3=Sumathi |last4=Sutherland |first4=Paul |last5=Nieuwenhuizen |first5=Niels |last6=Gunaseelan |first6=Kularajathevan |last7=Winz |first7=Robert |last8=David |first8=Karine |last9=Schaffer |first9=Robert |title=Apple SEPALLATA1/2-like genes control fruit flesh development and ripening |journal=The Plant Journal |date=13 December 2012 |volume=73 |issue=6 |pages=1004–1056 |doi=10.1111/tpj.12094 |pmid=23236986 |doi-access= }}</ref> A study using strawberries concluded that hormone signaling pathways involving [[gibberellic acid]] and [[auxin]] affect gene expression, and contribute to the initiation of accessory fruit development.<ref name=":1">{{cite journal |last1=Zhou |first1=Junhui |last2=Sittmann |first2=John |last3=Guo |first3=Lei |last4=Xiao |first4=Yuwei |last5=Huang |first5=Xiaolong |last6=Pulapaka |first6=Anuhya |last7=Liu |first7=Zhongchi |title=Gibberellin and auxin signaling genes RGA1 and ARF8 repress accessory fruit initiation in diploid strawberry |journal=Plant Physiology |date=March 2021 |volume=185 |issue=3 |pages=1059–1075 | pmid=33793929 | doi=10.1093/plphys/kiaa087 |pmc=8133647}}</ref> Metabolic modifications in different developing accessory fruit tissues are due to the varied distributions of compounds such as [[triterpenoids]] and [[steroid]]s.<ref>{{cite journal |last1=Dashbaldan |first1=Soyol |last2=Rogowska |first2=Agata |last3=Pączkowski |first3=Cezary |last4=Szakiel |first4=Anna |title=Distribution of Triterpenoids and Steroids in Developing Rugosa Rose (Rosarugosa Thunb.) Accessory Fruit |journal=Molecules |date=25 August 2021 |volume=26 |issue=17 |page=5158 | pmid=34500591| doi=10.3390/molecules26175158 | pmc=8433923 |doi-access=free }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Accessory fruit
(section)
Add topic