Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
3D rotation group
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Using quaternions of unit norm === {{main|Quaternions and spatial rotation}} The group {{math|SU(2)}} is [[Group isomorphism|isomorphic]] to the [[quaternion]]s of unit norm via a map given by<ref>{{harvnb|Rossmann|2002}} p. 95.</ref> <math display="block">q = a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} = \alpha + \beta \mathbf{j} \leftrightarrow \begin{bmatrix}\alpha & \beta \\ -\overline\beta & \overline \alpha\end{bmatrix} = U</math> restricted to <math display="inline">a^2+ b^2 + c^2 + d^2 = |\alpha|^2 +|\beta|^2 = 1</math> where <math display="inline"> q \in \mathbb{H}</math>, <math display="inline">a, b, c, d \in \R</math>, <math display="inline"> U \in \operatorname{SU}(2)</math>, and <math>\alpha = a+bi \in\mathbb{C}</math>, <math>\beta = c+di \in \mathbb{C}</math>. Let us now identify <math>\R^3</math> with the span of <math>\mathbf{i},\mathbf{j},\mathbf{k}</math>. One can then verify that if <math>v</math> is in <math>\R^3</math> and <math>q</math> is a unit quaternion, then <math display="block">qvq^{-1}\in \R^3.</math> Furthermore, the map <math>v\mapsto qvq^{-1}</math> is a rotation of <math>\R^3.</math> Moreover, <math>(-q)v(-q)^{-1}</math> is the same as <math>qvq^{-1}</math>. This means that there is a {{math|2:1}} homomorphism from quaternions of unit norm to the 3D rotation group {{math|SO(3)}}. One can work this homomorphism out explicitly: the unit quaternion, {{mvar|q}}, with <math display="block">\begin{align} q &= w + x\mathbf{i} + y\mathbf{j} + z\mathbf{k} , \\ 1 &= w^2 + x^2 + y^2 + z^2 , \end{align}</math> is mapped to the rotation matrix <math display="block"> Q = \begin{bmatrix} 1 - 2 y^2 - 2 z^2 & 2 x y - 2 z w & 2 x z + 2 y w \\ 2 x y + 2 z w & 1 - 2 x^2 - 2 z^2 & 2 y z - 2 x w \\ 2 x z - 2 y w & 2 y z + 2 x w & 1 - 2 x^2 - 2 y^2 \end{bmatrix}. </math> This is a rotation around the vector {{math|(''x'', ''y'', ''z'')}} by an angle {{math|2''θ''}}, where {{math|1=cos ''θ'' = ''w''}} and {{math|1={{!}}sin ''θ''{{!}} = {{norm|(''x'', ''y'', ''z'')}}}}. The proper sign for {{math|sin ''θ''}} is implied, once the signs of the axis components are fixed. The {{nowrap|{{math|2:1}}-nature}} is apparent since both {{math|''q''}} and {{math|−''q''}} map to the same {{math|''Q''}}.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
3D rotation group
(section)
Add topic