Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
3-sphere
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===One-point compactification=== After removing a single point from the 2-sphere, what remains is homeomorphic to the Euclidean plane. In the same way, removing a single point from the 3-sphere yields three-dimensional space. An extremely useful way to see this is via [[stereographic projection]]. We first describe the lower-dimensional version. Rest the south pole of a unit 2-sphere on the {{mvar|xy}}-plane in three-space. We map a point {{math|P}} of the sphere (minus the north pole {{math|N}}) to the plane by sending {{math|P}} to the intersection of the line {{math|NP}} with the plane. Stereographic projection of a 3-sphere (again removing the north pole) maps to three-space in the same manner. (Notice that, since stereographic projection is [[conformal map projection|conformal]], round spheres are sent to round spheres or to planes.) A somewhat different way to think of the one-point compactification is via the [[exponential map (Riemmanian geometry)|exponential map]]. Returning to our picture of the unit two-sphere sitting on the Euclidean plane: Consider a geodesic in the plane, based at the origin, and map this to a geodesic in the two-sphere of the same length, based at the south pole. Under this map all points of the circle of radius {{pi}} are sent to the north pole. Since the open [[unit disk]] is homeomorphic to the Euclidean plane, this is again a one-point compactification. The exponential map for 3-sphere is similarly constructed; it may also be discussed using the fact that the 3-sphere is the [[Lie group]] of unit quaternions.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
3-sphere
(section)
Add topic